J.E. Chambers
British Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J.E. Chambers.
Geophysics | 2006
J.E. Chambers; Oliver Kuras; Philip I. Meldrum; R.D. Ogilvy; Jonathan Hollands
A former dolerite quarry and landfill site was investigated using 2D and 3D electrical resistivity tomography (ERT), with the aims of determining buried quarry geometry, mapping bedrock contamination arising from the landfill, and characterizing site geology. Resistivity data were collected from a network of intersecting survey lines using a Wenner-based array configuration. Inversion of the data was carried out using 2D and 3D regularized least-squares optimization methods with robust (L1-norm) model constraints. For this site, where high resistivity contrasts were present, robust model constraints produced a more accurate recovery of subsurface structures when compared to the use of smooth (L2-norm) constraints. Integrated 3D spatial analysis of the ERT and conventional site investigation data proved in this case a highly effective means of characterizing the landfill and its environs. The 3D resistivity model was successfully used to confirm the position of the landfill boundaries, which appeared as electrically well-defined features that corresponded extremely closely to both historic maps and intrusive site investigation data. A potential zone of leachate migration from the landfill was identified from the electrical models; the location of this zone was consistent with the predicted direction of groundwater flow across the site. Unquarried areas of a dolerite sill were imaged as a resistive sheet-like feature, while the fault zone appeared in the 2D resistivity model as a dipping structure defined by contrasting bedrock resistivities.
Journal of Contaminant Hydrology | 2004
J.E. Chambers; M.H. Loke; R.D. Ogilvy; Philip I. Meldrum
Electrical impedance tomography (EIT) was used to monitor the movement of a fluorinated hydrocarbon dense nonaqueous phase liquid (DNAPL) through a saturated porous medium within a laboratory column. Impedance measurements were made using a horizontal plane of 12 electrodes positioned at regular intervals around the centre of the column. A 2D inversion algorithm, which incorporated the cylindrical geometry of the column, was used to reconstruct resistivity and phase images from the measured data. Differential time-lapse images of DNAPL movement past the plane of electrodes were generated by the cell-by-cell subtraction of resistivity and phase baseline models from those associated with the DNAPL release stage of the experiment. The DNAPL pulse was clearly delineated as resistive anomalies in the differential time-lapse resistivity images. The spatial extent of the resistive anomalies indicated that in addition to vertical migration, some lateral spreading of the DNAPL had occurred. Residual contamination could be detected after quasi-static conditions were reestablished. Residual DNAPL saturation was estimated from the resistivity model data by applying Archies second equation.Despite significant measured phase changes due to DNAPL contamination, the differential phase images revealed only weak anomalies associated with DNAPL flow; these anomalies could be seen only in the initial stages of the experiment during peak flow through the plane of electrodes.
Near Surface Geophysics | 2009
R.D. Ogilvy; Philip I. Meldrum; Oliver Kuras; P.B. Wilkinson; J.E. Chambers; M. Sen; Antonio Pulido-Bosch; Juan Gisbert; Sara Jorreto; I. Frances; P. Tsourlos
An Automated time-Lapse Electrical Resistivity Tomography (ALERT) system has been developed for the long-term monitoring of coastal aquifers. This ALERT system has been permanently installed in the River Andarax, Almeria, Spain to monitor and manage the impact of climatic change and land-use practice on the underlying Quaternary aquifer. An electrode array, nearly 1.6 km long, has been buried below the normally dry riverbed with electrode take-outs at regular intervals of 10 m. The maximum depth of investigation is about 160 m below ground level. An unmanned, permanent control station, in a secure location, allows the aquifer to be interrogated remotely from the BGS office in the UK. Volumetric geoelectric images of the subsurface can be obtained ‘on demand’ or at regular intervals; thereby eliminating the need for expensive repeat surveys. The entire process from data capture to image on the office PC is fully automated and seamless. The ALERT technology can provide early warning of potential threats to vulnerable water systems such as over-exploitation, rising sea levels, anthropogenic pollutants and seawater intrusion. The electrical images obtained (in space and time) are interpreted in terms of the hydrogeologic features including the seawater-freshwater interface. The timely detection and imaging of groundwater changes can help to regulate pumping and irrigation schemes.
Near Surface Geophysics | 2014
J.E. Chambers; David Gunn; P.B. Wilkinson; Philip I. Meldrum; Edward Haslam; S. Holyoake; M. Kirkham; Oliver Kuras; A. Merritt; Joanna Wragg
The internal moisture dynamics of an aged (> 100 years old) railway earthwork embankment, which is still in use, are investigated using 2D and 3D resistivity monitoring. A methodology was employed that included automated 3D ERT data capture and telemetric transfer with on-site power generation, the correction of resistivity models for seasonal temperature changes and the translation of subsurface resistivity distributions into moisture content based on petrophysical relationships developed for the embankment material. Visualization of the data as 2D sections, 3D tomograms and time series plots for different zones of the embankment enabled the development of seasonal wetting fronts within the embankment to be monitored at a high-spatial resolution and the respective distributions of moisture in the flanks, crest and toes of the embankment to be assessed. Although the embankment considered here is at no immediate risk of failure, the approach developed for this study is equally applicable to other more high-risk earthworks and natural slopes.
Computers & Geosciences | 2010
Meng H. Loke; P.B. Wilkinson; J.E. Chambers
Four different methods to automatically select an optimal set of array configurations that gives the maximum subsurface resolution with a limited number of measurements for 2D electrical imaging surveys were tested. The first (CR) method directly calculates the change in the model resolution for each new array added to the base data set, and uses this to select array configurations that gave the maximum model resolution. However this method is the slowest. The algorithm used by the CR method for calculating rank-one updates was optimized to reduce computational time by a factor of eighty. The sequence of calculations was modified to reduce the traffic between the computer main memory and the CPU registers. Further code optimizations were made to take advantage of the parallel processing capabilities of modern CPUs. The second (ETH) and third (BGS) methods use approximations based on the sensitivity values to estimate the change in the model resolution matrix. The ETH and BGS methods, respectively, use the first and second power of the sensitivity values to calculate approximations of the model resolution. Both methods are about an order of magnitude faster than the CR method. The results obtained by the BGS method are significantly better than the ETH method, and it approaches that of the CR method. The fourth method (BGS-CR) uses a combination of the BGS and CR methods. It produces results that are almost identical to the CR method but is several times faster. The different methods were tested using data from synthetic models and field surveys. The models obtained from the inversion of the data sets generated by the four different methods confirm that the models generated by the CR method have the best resolution, followed by the BGS-CR, BGS and ETH methods.
Landslides | 2014
A. Merritt; J.E. Chambers; William Murphy; P.B. Wilkinson; L.J. West; David Gunn; Philip I. Meldrum; M. Kirkham; Neil Dixon
A ground model of an active and complex landslide system in instability prone Lias mudrocks of North Yorkshire, UK is developed through an integrated approach, utilising geophysical, geotechnical and remote sensing investigative methods. Surface geomorphology is mapped and interpreted using immersive 3D visualisation software to interpret airborne light detection and ranging data and aerial photographs. Subsurface structure is determined by core logging and 3D electrical resistivity tomography (ERT), which is deployed at two scales of resolution to provide a means of volumetrically characterising the subsurface expression of both site scale (tens of metres) geological structure, and finer (metre to sub-metre) scale earth-flow related structures. Petrophysical analysis of the borehole core samples is used to develop relationships between the electrical and physical formation properties, to aid calibration and interpretation of 3D ERT images. Results of the landslide investigation reveal that an integrated approach centred on volumetric geophysical imaging successfully achieves a detailed understanding of structure and lithology of a complex landslide system, which cannot be achieved through the use of remotely sensed data or discrete intrusive sampling alone.
Journal of Contaminant Hydrology | 2010
J.E. Chambers; P.B. Wilkinson; G. P. Wealthall; Meng H. Loke; Rachel Dearden; Ryan D. Wilson; Debbie Allen; R.D. Ogilvy
Robust characterization and monitoring of dense nonaqueous phase liquid (DNAPL) source zones is essential for designing effective remediation strategies, and for assessing the efficacy of treatment. In this study high-resolution cross-hole electrical resistivity tomography (ERT) was evaluated as a means of monitoring a field-scale in-situ bioremediation experiment, in which emulsified vegetable oil (EVO) electron donor was injected into a trichloroethene source zone. Baseline ERT scans delineated the geometry of the interface between the contaminated alluvial aquifer and the underlying mudstone bedrock, and also the extent of drilling-induced physical heterogeneity. Time-lapse ERT images revealed major preferential flow pathways in the source and plume zones, which were corroborated by multiple lines of evidence, including geochemical monitoring and hydraulic testing using high density multilevel sampler arrays within the geophysical imaging planes. These pathways were shown to control the spatial distribution of the injected EVO, and a bicarbonate buffer introduced into the cell for pH control. Resistivity signatures were observed within the preferential flow pathways that were consistent with elevated chloride levels, providing tentative evidence from ERT of the biodegradation of chlorinated solvents.
Water Resources Research | 2014
J.E. Chambers; P.B. Wilkinson; Sebastian Uhlemann; James Sorensen; Chris Roberts; Andrew J. Newell; Wil O.C. Ward; Andrew Binley; Peter J. Williams; Daren Gooddy; Gareth H. Old; Li Bai
For groundwater-surface water interactions to be understood in complex wetland settings, the architecture of the underlying deposits requires investigation at a spatial resolution sufficient to characterize significant hydraulic pathways. Discrete intrusive sampling using conventional approaches provides insufficient sample density and can be difficult to deploy on soft ground. Here a noninvasive geophysical imaging approach combining three-dimensional electrical resistivity tomography (ERT) and the novel application of gradient and isosurface-based edge detectors is considered as a means of illuminating wetland deposit architecture. The performance of three edge detectors were compared and evaluated against ground truth data, using a lowland riparian wetland demonstration site. Isosurface-based methods correlated well with intrusive data and were useful for defining the geometries of key geological interfaces (i.e., peat/gravels and gravels/Chalk). The use of gradient detectors approach was unsuccessful, indicating that the assumption that the steepest resistivity gradient coincides with the associated geological interface can be incorrect. These findings are relevant to the application of this approach in settings with a broadly layered geology with strata of contrasting resistivities. In addition, ERT revealed substantial structures in the gravels related to the depositional environment (i.e., braided fluvial system) and a complex distribution of low-permeability putty Chalk at the bedrock surface—with implications for preferential flow and variable exchange between river and groundwater systems. These results demonstrate that a combined approach using ERT and edge detectors can provide valuable information to support targeted monitoring and inform hydrological modeling of wetlands.
Geophysical Prospecting | 2014
M.H. Loke; P.B. Wilkinson; J.E. Chambers; M. Strutt
The use of optimized arrays generated using the ‘Compare R’ method for cross-borehole resistivity measurements is examined in this paper. We compare the performances of two array optimization algorithms, one that maximizes the model resolution and another that minimizes the point spread value. Although both algorithms give similar results, the model resolution maximization algorithm is several times faster. A study of the point spread function plots for a cross-borehole survey shows that the model resolution within the central zone surrounded by the borehole electrodes is much higher than near the bottom end of the boreholes. Tests with synthetic and experimental data show that the optimized arrays generated by the ‘Compare R’ method have significantly better resolution than a ‘standard’ measurement sequence used in previous surveys. The resolution of the optimized arrays is less if arrays with both current (or both potential) electrodes in the same borehole are excluded. However, they are still better than the ‘standard’ arrays.
Journal of Environmental and Engineering Geophysics | 2006
P.B. Wilkinson; J.E. Chambers; Philip I. Meldrum; R.D. Ogilvy; Simon Caunt
Cross-borehole electrical resistivity tomography was used to detect and image a concealed air-filled mineshaft at a greenfield test site. The measurement configurations and panel combinations were selected using a two-stage optimization process. An optimal set of array configurations was selected for each cross-borehole panel on the basis of the model resolution matrix. Subsequently, various combinations of panels were tested with synthetic and field data to determine the effects of coverage and data density on the resulting tomographic image. In the field trials, complicating factors were introduced by the use of resistive cement linings in the boreholes. A resistive feature was detected between the boreholes using a single panel and a 2.5D inversion, but the image quality was too poor to identify this as a mineshaft. A much-improved image was obtained using eight boreholes and eight panels with a full 3D inversion. Only four of these panels intersected the shaft. Crucially, the other panels provided coverage of outlying regions of the model, enabling the inversion algorithm to distinguish between the resistive effects of the borehole linings and the mineshaft.