J.E. Mesonero
University of Zaragoza
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J.E. Mesonero.
FEBS Letters | 1998
Laura Zecca; J.E. Mesonero; Alfred Stutz; Jean-Claude Poirée; Jean Giudicelli; Raffaele Cursio; Sergio M. Gloor; Giorgio Semenza
The proteolytic processing of pro‐lactase‐phlorizin hydrolase by (rat) enterocytes stops two amino acid residues short of the N‐terminus of ‘mature’ final, brush border lactase‐phlorizin hydrolase. Only these two amino acid residues are removed by luminal pancreatic protease(s), probably trypsin.
Innate Immunity | 2009
Carmen Mendoza; Nyurky Matheus; Ruth Iceta; J.E. Mesonero; Ana Isabel Alcalde
Intestinal serotoninergic activity and serotonin transporter (SERT) function have been shown to be altered in intestinal inflammatory diseases. Serotonin (5-HT) plays a critical role in the regulation of gastrointestinal physiology. Activity of 5-HT depends on its extracellular availability, partly modulated by SERT that transports 5-HT into the cell. Lipopolysaccharide (LPS) is a component of Gram-negative bacteria outer membrane, which acts as a potent activator of the inflammatory system in the intestine. The aim of this work was to determine, in the enterocyte-like cell line Caco-2, whether LPS treatment affects serotoninergic activity by acting on SERT. The results demonstrate that LPS treatment diminishes SERT activity in a dose- and period-dependent way. The kinetic study shows that Vmax was significantly reduced after treatment with LPS. The LPS effect on 5-HT uptake was, in part, mediated by protein kinase C (PKC) activation. The molecular expression of SERT revealed that LPS treatment did not affect the mRNA level or the SERT protein content in cell homogenate. The level of SERT protein, however, was reduced on brush border membrane. The LPS effect might be due to an alteration of the intracellular traffic of SERT which may, in part, be mediated by PKC activity.
Biochemistry | 2000
Andreas Hofmann; Céline Raguénès-Nicol; Béatrice Favier-Perron; J.E. Mesonero; Robert Huber; Françoise Russo-Marie; Anita Lewit-Bentley
The crystal structure of annexin A3 (human annexin III) solved recently revealed a well-ordered folding of its N-terminus with the side chain of tryptophan 5 interacting with residues at the extremity of the central pore. Since the pore of annexins has been suggested as the ion pathway involved in membrane permeabilization by these proteins, we investigated the effect of the N-terminal tryptophan on the channel activity of annexin A3 by a comparative study of the wild-type and the W5A mutant in structural and functional aspects. Calcium influx and patch-clamp recordings revealed that the mutant exhibited an enhanced membrane permeabilization activity as compared to the wild-type protein. Analysis of the phospholipid binding behavior of wild-type and mutant protein was carried out by cosedimentation with lipids and inhibition of PLA(2) activity. Both methods reveal a much stronger binding of the mutant to phospholipids. The structure is very similar for the wild-type and the mutant protein. The exchange of the tryptophan for an alanine results in a disordered N-terminal segment. Urea-induced denaturation of the wild-type and mutant monitored by intrinsic fluorescence indicates a separate unfolding of the N-terminal region which occurs at lower urea concentrations than unfolding of the protein core. We therefore conclude that the N-terminal domain of annexin A3, and especially tryptophan 5, is involved in the modulation of membrane binding and permeabilization by annexin A3.
Hormone and Metabolic Research | 2009
Olga Gómez; Ballester B; Romero A; Arnal E; Almansa I; Miranda M; J.E. Mesonero; José Terrado
Diabetes induces several malfunctions in male germ cells. The aim of this study was to analyze the levels and localization of the glucose transporter GLUT8 and insulin in the testes of rats induced to a diabetic status by a single dose of streptozotocin. One month after inducing diabetes, the GLUT8 immunoreactivity in diabetic rats was mainly located associated to the acrosomic system of spermatids, and at low levels in Leydig cells. Neither the immunohistochemical localization of this transporter nor its levels showed any difference when compared to control rats. Furthermore, it was observed that control rat testes expressed insulin, which was diffusely located in the cytoplasm of both Leydig cells and early elongated spermatids and concentrated in a cytoplasmic compartment in the more mature spermatids. Testicular insulin levels measured by western blot were reduced by more than half in diabetic rats, although the distribution of the hormone was unchanged. These results indicate that i) insulin is produced by testicular cells, ii) insulin is depleted by streptozotocin-induced diabetes, and iii) that insulin depletion and hyperglycemia do not regulate the expression of GLUT8 in testes. These results also suggest that testicular production of insulin could play a role in regulating spermatogenesis and/or glucose metabolism in these organs.
Digestive Diseases and Sciences | 2001
B. Abad; J.E. Mesonero; M.T. Salvador; J. Garcia-Herrera; M.J. Rodriguez-Yoldi
In the present study, we have investigated whether the lipopolysaccharide (LPS) endotoxin from Escherichia coli is able to alter the jejunal transport of l-leucine when the tissue is exposed to endotoxin. The results have shown that the LPS at 3 × 10-5 μg/ml decreases the uptake of l-leucine into the enterocyte, as well as the mucosal to serosal flux of l-leucine. The secretagogue effect of LPS on the gut did not affect the inhibitory effect of LPS on the intestinal absorption of the amino acid. The endotoxin did not modify amino acid diffusion across the intestinal epithelium. However, from the mediated transport, only the Na+-dependent transport system was affected by LPS with a diminution of the transporter affinity (the apparent Km was increased). In addition, we found a reduction of the Na+, K+-ATPase activity, which could explain the l-leucine Na+-dependent transport inhibition.
Acta Physiologica | 2008
Ruth Iceta; J. J. Aramayona; J.E. Mesonero; Ana Isabel Alcalde
Aim: The aim of this study was to determine the effect of long‐term serotonin (5‐hydroxytryptamine, 5‐HT) treatment on the human serotonin transporter (hSERT) function and its expression.
Journal of Anatomy | 2010
Olga Gómez; Begoña Ballester-Lurbe; Enric Poch; J.E. Mesonero; José Terrado
Glucose uptake into the mammalian nervous system is mediated by the family of facilitative glucose transporter proteins (GLUT). In this work we investigate how the expression of the main neuronal glucose transporters (GLUT3, GLUT4 and GLUT8) is modified during cerebellar cortex maturation. Our results reveal that the levels of the three transporters increase during the postnatal development of the cerebellum. GLUT3 localizes in the growing molecular layer and in the internal granule cell layer. However, the external granule cell layer, Purkinje cell cytoplasm and cytoplasm of the other cerebellar cells lack GLUT3 expression. GLUT4 and GLUT8 have partially overlapping patterns, which are detected in the cytoplasm and dendrites of Purkinje cells, and also in the internal granule cell layer where GLUT8 displays a more diffuse pattern. The differential localization of the transporters suggests that they play different roles in the cerebellum, although GLUT4 and GLUT8 could also perform some compensatory or redundant functions. In addition, the increase in the levels and the area expressing the three transporters suggests that these roles become more important as development advances. Interestingly, the external granule cells, which have been shown to express the monocarboxylate transporter MCT2, express none of the three main neuronal GLUTs. However, when these cells migrate inwardly to differentiate in the internal granule cells, they begin to produce GLUT3, GLUT4 and GLUT8, suggesting that the maturation of the cerebellar granule cells involves a switch in their metabolism in such a way that they start using glucose as they mature.
Journal of Endotoxin Research | 2002
B. Abad; J.E. Mesonero; M.T. Salvador; J. Garcia-Herrera; M.J. Rodriguez-Yoldi
Lipopolysaccharide(LPS) is a known causative agent of sepsis. In previous studies, we have shown that it reduces L-leucine mediated transport across the rabbit jejunum by about 30%. In this study, the mechanism(s) of LPS inhibition on amino acid transport were analysed in detail. LPS did not inhibit L-leucine transport across brush border membrane vesicles, suggesting the need for an intracellular step. The inhibitory effect of LPS was not altered by the addition of protein kinase A (PKA) inhibitor (IP20, 10—7 M) or an analog of cAMP (DB-cAMP, 3 × 10—4 M), indicating that the PKA signal transduction pathway was not involved in the LPS effect. However, the inhibitory effect of LPS was suppressed by trifluoroperazine (10—7 M), a Ca2+/calmodulin inhibitor and staurosporine (10—7 M), an protein kinase C (PKC) inhibitor. Likewise, LPS inhibition disappeared in media without calcium. These results suggest that LPS could inhibit the intestinal uptake of L-leucine across the small intestine in vitro by intracellular processes related to calcium, involving PKC and calmodulin protein.
Life Sciences | 2001
B. Abad; J.E. Mesonero; M.T. Salvador; J.Garcia Herrera; M.J. Rodriguez-Yoldi
The objective of the present study was to determine the alterations in L-leucine intestinal uptake by intravenous administration of Lipopolysaccharide (LPS), which is a constituent of gram negative bacterial, causative agent of sepsis. The amino acid absorption in LPS treated rabbits was reduced compared to the control animals. The LPS effect on the amino acid uptake was due to an inhibition of the Na+-dependent system of transport, through both reduction of the apparent capacity transport (Vmax) and diminution of the Na+/K-ATPase activity. The results have also shown that the LPS decreases the mucosal to serosal transepithelial flux and the transport across brush border membrane vesicles of L-leucine. The study of possible intracellular mechanisms implicated in the LPS effect, showed that the second messengers calcium, protein kinase C and c-AMP did not play any role in this effect. However, the absence of ion chloride in the incubation medium removes the LPS inhibition and the intracellular tissue water was affected by the LPS treatment. Therefore, the inhibition in the L-leucine intestinal absorption, by intravenous administration of LPS, could be mainly produced by the secretagogue action of this endotoxin on the gut.
Cytokine | 2013
Eva Latorre; Carmen Mendoza; Nyurky Matheus; Marta Castro; Laura Grasa; J.E. Mesonero; Ana Isabel Alcalde
Serotonin is a neuromodulator mainly synthesized by intestinal enterochromaffin cells that regulate overall intestinal physiology. The serotonin transporter (SERT) determines the final serotonin availability and has been described as altered in inflammatory bowel diseases. IL-10 is an anti-inflammatory cytokine that is involved in intestinal inflammatory processes and also contributes to intestinal mucosa homeostasis. The regulation of SERT by pro-inflammatory factors is well known; however, the effect of IL-10 on the intestinal serotoninergic system mediated by SERT remains unknown. Therefore, the aim of the present study is to determine whether IL-10 affects SERT activity and expression in enterocyte-like Caco-2 cells. Treatment with IL-10 was assessed and SERT activity was determined by 5-HT uptake. SERT mRNA and protein expression was analyzed using quantitative RT-PCR and western blotting. The results showed that IL-10 induced a dual effect on SERT after 6h of treatment. On one hand, IL-10, at a low concentration, inhibited SERT activity, and this effect might be explained by a non-competitive inhibition of SERT. On the other hand, IL-10, at a high concentration, increased SERT activity and molecular expression in the membrane of the cells. This effect was mediated by the IL-10 receptor and triggered by the PI3K intracellular pathway. Our results demonstrate that IL-10 modulates SERT activity and expression, depending on its extracellular conditions. This study may contribute to understand serotoninergic responses in intestinal pathophysiology.