Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. E. Ruhl is active.

Publication


Featured researches published by J. E. Ruhl.


Journal of Cosmology and Astroparticle Physics | 2013

SPIDER: Probing the Early Universe with a Suborbital Polarimeter

A. A. Fraisse; Peter A. R. Ade; M. Amiri; S. J. Benton; J. J. Bock; J. R. Bond; J. A. Bonetti; Sean Bryan; B. Burger; H. C. Chiang; C. N. Clark; Carlo R. Contaldi; Brendan Crill; G. R. Davis; Olivier Doré; M. Farhang; J. Filippini; L. M. Fissel; N. N. Gandilo; S. R. Golwala; J. E. Gudmundsson; Matthew Hasselfield; G. C. Hilton; Warren Holmes; Viktor V. Hristov; K. D. Irwin; W. C. Jones; C. L. Kuo; C. J. MacTavish; P. Mason

We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a divergence-free polarization pattern (B-modes) in the Cosmic Microwave Background (CMB). In the inflationary scenario, the amplitude of this signal is proportional to that of the primordial scalar perturbations through the tensor-to-scalar ratio r. We show that the expected level of systematic error in the SPIDER instrument is significantly below the amplitude of an interesting cosmological signal with r=0.03. We present a scanning strategy that enables us to minimize uncertainty in the reconstruction of the Stokes parameters used to characterize the CMB, while accessing a relatively wide range of angular scales. Evaluating the amplitude of the polarized Galactic emission in the SPIDER field, we conclude that the polarized emission from interstellar dust is as bright or brighter than the cosmological signal at all SPIDER frequencies (90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the Southern Hole. We show that two ~20-day flights of the SPIDER instrument can constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when foreground contamination is taken into account. In the absence of foregrounds, the same limit can be reached after one 20-day flight.


Proceedings of SPIE | 2010

SPIDER: A balloon-borne CMB polarimeter for large angular scales

J. P. Filippini; Peter A. R. Ade; M. Amiri; S. J. Benton; R. Bihary; J. J. Bock; J. R. Bond; J. A. Bonetti; Sean Bryan; B. Burger; H. C. Chiang; Carlo R. Contaldi; Brendan Crill; Olivier Doré; M. Farhang; L. M. Fissel; N. N. Gandilo; S. R. Golwala; J. E. Gudmundsson; M. Halpern; Matthew Hasselfield; G. C. Hilton; Warren Holmes; Viktor V. Hristov; K. D. Irwin; W. C. Jones; C. L. Kuo; C. J. MacTavish; P. Mason; T. E. Montroy

We describe SPIDER, a balloon-borne instrument to map the polarization of the millimeter-wave sky with degree angular resolution. Spider consists of six monochromatic refracting telescopes, each illuminating a focal plane of large-format antenna-coupled bolometer arrays. A total of 2,624 superconducting transition-edge sensors are distributed among three observing bands centered at 90, 150, and 280 GHz. A cold half-wave plate at the aperture of each telescope modulates the polarization of incoming light to control systematics. SPIDERs first flight will be a 20-30-day Antarctic balloon campaign in December 2011. This flight will map ~8% of the sky to achieve unprecedented sensitivity to the polarization signature of the gravitational wave background predicted by inflationary cosmology. The SPIDER mission will also serve as a proving ground for these detector technologies in preparation for a future satellite mission.


The Astrophysical Journal | 2008

Spider optimization: Probing the systematics of a large-scale B-mode experiment

C. J. MacTavish; Peter A. R. Ade; E. S. Battistelli; S. Benton; R. Bihary; J. J. Bock; J. R. Bond; J. Brevik; Sean Bryan; Carlo R. Contaldi; Brendan Crill; Olivier Doré; L. M. Fissel; S. R. Golwala; M. Halpern; G. C. Hilton; Warren Holmes; Viktor V. Hristov; K. D. Irwin; W. C. Jones; C. L. Kuo; A. E. Lange; C. Lawrie; T. G. Martin; P. Mason; T. E. Montroy; C. B. Netterfield; Derek D. Riley; J. E. Ruhl; M. C. Runyan

Spider is a long-duration, balloon-borne polarimeter designed to measure large-scale cosmic microwave background (CMB) polarization with very high sensitivity and control of systematics. The instrument will map over half the sky with degree angular resolution in the I, Q, and U Stokes parameters in four frequency bands from 96 to 275 GHz. Spiders ultimate goal is to detect the primordial gravity-wave signal imprinted on the CMB B-mode polarization. One of the challenges in achieving this goal is the minimization of the contamination of B-modes by systematic effects. This paper explores a number of instrument systematics and observing strategies in order to optimize B-mode sensitivity. This is done by injecting realistic-amplitude, time-varying systematics into a set of simulated time streams. Tests of the impact of detector noise characteristics, pointing jitter, payload pendulations, polarization angle offsets, beam systematics, and receiver gain drifts are shown. Spiders default observing strategy is to spin continuously in azimuth, with polarization modulation achieved by either a rapidly spinning half-wave plate or a rapidly spinning gondola and a slowly stepped half-wave plate. Although the latter is more susceptible to systematics, the results shown here indicate that either mode of operation can be used by Spider.


Proceedings of SPIE | 2006

SPIDER: a new balloon-borne experiment to measure CMB polarization on large angular scales

T. E. Montroy; Peter A. R. Ade; R. Bihary; J. J. Bock; J. R. Bond; J. Brevick; Carlo R. Contaldi; Brendan Crill; A. T. Crites; Olivier Doré; L. Duband; S. R. Golwala; M. Halpern; G. C. Hilton; Warren Holmes; Viktor V. Hristov; K. D. Irwin; W. C. Jones; C. L. Kuo; A. E. Lange; C. J. MacTavish; P. Mason; Jerry Mulder; C. B. Netterfield; Enzo Pascale; J. E. Ruhl; A. Trangsrud; Carole Tucker; A. D. Turner; M. Viero

We describe SPIDER, a novel balloon-borne experiment designed to measure the polarization of the Cosmic Microwave Background (CMB) on large angular scales. The primary goal of SPIDER is to detect the faint signature of inflationary gravitational waves in the CMB polarization. The payload consists of six telescopes, each operating in a single frequency band and cooled to 4 K by a common LN/LHe cryostat. The primary optic for each telescope is a 25 cm diameter lens cooled to 4 K. Each telescope feeds an array of antenna coupled, polarization sensitive sub-Kelvin bolometers that covers a 20 degree diameter FOV with diffraction limited resolution. The six focal planes span 70 to 300 GHz in a manner optimized to separate polarized galactic emission from CMB polarization, and together contain over 2300 detectors. Polarization modulation is achieved by rotating a cryogenic half-wave plate in front of the primary optic of each telescope. The cryogenic system is designed for 30 days of operation. Observations will be conducted during the night portions of a mid-latitude, long duration balloon flight which will circumnavigate the globe from Australia. By spinning the payload at 1 rpm with the six telescopes fixed in elevation, SPIDER will map approximately half of the sky at each frequency on each night of the flight.


Proceedings of SPIE | 2010

Design and performance of the SPIDER instrument

M. C. Runyan; Peter A. R. Ade; M. Amiri; S. J. Benton; R. Bihary; J. J. Bock; J. R. Bond; J. A. Bonetti; Sean Bryan; H. C. Chiang; Carlo R. Contaldi; Brendan Crill; Olivier Doré; D. T. O'Dea; M. Farhang; J. P. Filippini; L. M. Fissel; N. N. Gandilo; S. R. Golwala; J. E. Gudmundsson; Matthew Hasselfield; M. Halpern; G. C. Hilton; Warren Holmes; Viktor V. Hristov; K. D. Irwin; W. C. Jones; C. L. Kuo; C. J. MacTavish; P. Mason

Here we describe the design and performance of the SPIDER instrument. SPIDER is a balloon-borne cosmic microwave background polarization imager that will map part of the sky at 90, 145, and 280 GHz with subdegree resolution and high sensitivity. This paper discusses the general design principles of the instrument inserts, mechanical structures, optics, focal plane architecture, thermal architecture, and magnetic shielding of the TES sensors and SQUID multiplexer. We also describe the optical, noise, and magnetic shielding performance of the 145 GHz prototype instrument insert.


Proceedings of SPIE | 2010

Modeling and characterization of the SPIDER half-wave plate

Sean Bryan; Peter A. R. Ade; M. Amiri; S. Benton; R. Bihary; J. J. Bock; J. Richard Bond; Joseph A. Bonetti; H. Cynthia Chiang; Carlo R. Contaldi; Brendan Crill; Daniel O'Dea; Olivier Doré; M. Farhang; J. Filippini; L. M. Fissel; N. N. Gandilo; S. R. Golwala; J. E. Gudmundsson; Matthew Hasselfield; M. Halpern; Kyle Helson; G. C. Hilton; Warren Holmes; Viktor V. Hristov; K. D. Irwin; W. C. Jones; C. L. Kuo; C. J. MacTavish; Peter Mason

Spider is a balloon-borne array of six telescopes that will observe the Cosmic Microwave Background. The 2624 antenna-coupled bolometers in the instrument will make a polarization map of the CMB with approximately one-half degree resolution at 145 GHz. Polarization modulation is achieved via a cryogenic sapphire half-wave plate (HWP) skyward of the primary optic. We have measured millimeter-wave transmission spectra of the sapphire at room and cryogenic temperatures. The spectra are consistent with our physical optics model, and the data gives excellent measurements of the indices of A-cut sapphire. We have also taken preliminary spectra of the integrated HWP, optical system, and detectors in the prototype Spider receiver. We calculate the variation in response of the HWP between observing the CMB and foreground spectra, and estimate that it should not limit the Spider constraints on inflation.


The Astrophysical Journal | 2011

Spider Optimization II: Optical, Magnetic and Foreground Effects

D. T. O'Dea; Peter A. R. Ade; M. Amiri; S. J. Benton; J. J. Bock; J. R. Bond; J. A. Bonetti; Sean Bryan; B. Burger; H. C. Chiang; C. N. Clark; Carlo R. Contaldi; Brendan Crill; G. Davis; Olivier Doré; M. Farhang; J. Filippini; L. M. Fissel; A. A. Fraisse; N. N. Gandilo; S. R. Golwala; J. E. Gudmundsson; Matthew Hasselfield; G. C. Hilton; Warren Holmes; Viktor V. Hristov; K. D. Irwin; W. C. Jones; C. L. Kuo; C. J. MacTavish

SPIDER is a balloon-borne instrument designed to map the polarization of the cosmic microwave background (CMB) with degree-scale resolution over a large fraction of the sky. SPIDERs main goal is to measure the amplitude of primordial gravitational waves through their imprint on the polarization of the CMB if the tensor-to-scalar ratio, r, is greater than 0.03. To achieve this goal, instrumental systematic errors must be controlled with unprecedented accuracy. Here, we build on previous work to use simulations of SPIDER observations to examine the impact of several systematic effects that have been characterized through testing and modeling of various instrument components. In particular, we investigate the impact of the non-ideal spectral response of the half-wave plates, coupling between focal-plane components and Earths magnetic field, and beam mismatches and asymmetries. We also present a model of diffuse polarized foreground emission based on a three-dimensional model of the Galactic magnetic field and dust, and study the interaction of this foreground emission with our observation strategy and instrumental effects. We find that the expected level of foreground and systematic contamination is sufficiently low for SPIDER to achieve its science goals.


Proceedings of SPIE | 2010

Thermal Architecture for the SPIDER flight cryostat

J. E. Gudmundsson; Peter A. R. Ade; M. Amiri; S. Benton; R. Bihary; J. J. Bock; J. R. Bond; J. A. Bonetti; Sean Bryan; B. Burger; H. C. Chiang; Carlo R. Contaldi; Brendan Crill; Olivier Doré; M. Farhang; J. Filippini; L. M. Fissel; N. N. Gandilo; S. R. Golwala; M. Halpern; Matthew Hasselfield; G. C. Hilton; Warren Holmes; Viktor V. Hristov; K. D. Irwin; W. C. Jones; C. L. Kuo; C. J. MacTavish; P. Mason; T. E. Montroy

We describe the cryogenic system for SPIDER, a balloon-borne microwave polarimeter that will map 8% of the sky with degree-scale angular resolution. The system consists of a 1284 L liquid helium cryostat and a 16 L capillary-filled superfluid helium tank, which provide base operating temperatures of 4 K and 1.5 K, respectively. Closed-cycle 3He adsorption refrigerators supply sub-Kelvin cooling power to multiple focal planes, which are housed in monochromatic telescope inserts. The main helium tank is suspended inside the vacuum vessel with thermally insulating fiberglass flexures, and shielded from thermal radiation by a combination of two vapor cooled shields and multi-layer insulation. This system allows for an extremely low instrumental background and a hold time in excess of 25 days. The total mass of the cryogenic system, including cryogens, is approximately 1000 kg. This enables conventional long duration balloon flights. We will discuss the design, thermal analysis, and qualification of the cryogenic system.


arXiv: Astrophysics | 2006

Task force on cosmic microwave background research

J. J. Bock; Adrian T. Lee; Max Tegmark; Matias Zaldarriaga; A. E. Lange; Mark J. Devlin; J. E. Ruhl; B. Winstein; Peter T. Timbie; G. Hinshaw; Lyman A. Page; B. Partridge; Rainer Weiss; S. Church


Storage and Retrieval for Image and Video Databases | 2008

SPIDER: a balloon-borne large-scale CMB polarimeter

Brendan Crill; Peter A. R. Ade; E. S. Battistelli; Seth Benton; R. Bihary; J. J. Bock; J. R. Bond; J. A. Brevik; Scott R. Bryan; Carlo R. Contaldi; Olivier Doré; Mahmoud Farhang; L. M. Fissel; S. R. Golwala; M. Halpern; G. C. Hilton; Warren Holmes; Viktor V. Hristov; K. D. Irwin; W. C. Jones; C. L. Kuo; A. E. Lange; Charles H. Lawrie; C. J. MacTavish; T. G. Martin; P. Mason; T. E. Montroy; C. B. Netterfield; Enzo Pascale; Derek D. Riley

Collaboration


Dive into the J. E. Ruhl's collaboration.

Top Co-Authors

Avatar

J. J. Bock

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Brendan Crill

Jet Propulsion Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. C. Hilton

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Doré

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

S. R. Golwala

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Viktor V. Hristov

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Warren Holmes

Jet Propulsion Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge