Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Elliott Robinson is active.

Publication


Featured researches published by J. Elliott Robinson.


Neuron | 2015

A New DREADD Facilitates the Multiplexed Chemogenetic Interrogation of Behavior

Eyal Vardy; J. Elliott Robinson; Chia Li; Reid H.J. Olsen; Jeffrey F. DiBerto; Patrick M. Giguère; Flori M. Sassano; Xi Ping Huang; Hu Zhu; Daniel J. Urban; Kate L. White; Joseph E. Rittiner; Nicole A. Crowley; Kristen E. Pleil; Christopher M. Mazzone; Philip D. Mosier; Juan Song; Thomas L. Kash; C. J. Malanga; Michael J. Krashes; Bryan L. Roth

DREADDs are chemogenetic tools widely used to remotely control cellular signaling, neuronal activity, and behavior. Here we used a structure-based approach to develop a new Gi-coupled DREADD using the kappa-opioid receptor as a template (KORD) that is activated by the pharmacologically inert ligand salvinorin B (SALB). Activation of virally expressed KORD in several neuronal contexts robustly attenuated neuronal activity and modified behaviors. Additionally, co-expression of the KORD and the Gq-coupled M3-DREADD within the same neuronal population facilitated the sequential and bidirectional remote control of behavior. The availability of DREADDs activated by different ligands provides enhanced opportunities for investigating diverse physiological systems using multiplexed chemogenetic actuators.


Journal of Pharmacology and Experimental Therapeutics | 2014

The G Protein–Biased κ -Opioid Receptor Agonist RB-64 Is Analgesic with a Unique Spectrum of Activities In Vivo

Kate L. White; J. Elliott Robinson; Hu Zhu; Jeffrey F. DiBerto; Prabhakar R. Polepally; Jordan K. Zjawiony; David E. Nichols; C. J. Malanga; Bryan L. Roth

The hypothesis that functionally selective G protein–coupled receptor (GPCR) agonists may have enhanced therapeutic benefits has revitalized interest for many GPCR targets. In particular, although κ-opioid receptor (KOR) agonists are analgesic with a low risk of dependence and abuse, their use is limited by a propensity to induce sedation, motor incoordination, hallucinations, and dysphoria-like states. Several laboratories have produced a body of work suggesting that G protein–biased KOR agonists might be analgesic with fewer side effects. Although that has been an intriguing hypothesis, suitable KOR-selective and G protein–biased agonists have not been available to test this idea. Here we provide data using a G protein–biased agonist, RB-64 (22-thiocyanatosalvinorin A), which suggests that KOR-mediated G protein signaling induces analgesia and aversion, whereas β-arrestin-2 signaling may be associated with motor incoordination. Additionally, unlike unbiased KOR agonists, the G protein–biased ligand RB-64 does not induce sedation and does not have anhedonia-like actions, suggesting that a mechanism other than G protein signaling mediates these effects. Our findings provide the first evidence for a highly selective and G protein–biased tool compound for which many, but not all, of the negative side effects of KOR agonists can be minimized by creating G protein–biased KOR agonists.


Nature | 2017

Prefrontal cortex output circuits guide reward seeking through divergent cue encoding

James M. Otis; Vijay Mohan K. Namboodiri; Ana M. Matan; Elisa S. Voets; Emily P. Mohorn; Oksana Kosyk; Jenna A. McHenry; J. Elliott Robinson; Shanna L Resendez; Mark A. Rossi; Garret D. Stuber

The prefrontal cortex is a critical neuroanatomical hub for controlling motivated behaviours across mammalian species. In addition to intra-cortical connectivity, prefrontal projection neurons innervate subcortical structures that contribute to reward-seeking behaviours, such as the ventral striatum and midline thalamus. While connectivity among these structures contributes to appetitive behaviours, how projection-specific prefrontal neurons encode reward-relevant information to guide reward seeking is unknown. Here we use in vivo two-photon calcium imaging to monitor the activity of dorsomedial prefrontal neurons in mice during an appetitive Pavlovian conditioning task. At the population level, these neurons display diverse activity patterns during the presentation of reward-predictive cues. However, recordings from prefrontal neurons with resolved projection targets reveal that individual corticostriatal neurons show response tuning to reward-predictive cues, such that excitatory cue responses are amplified across learning. By contrast, corticothalamic neurons gradually develop new, primarily inhibitory responses to reward-predictive cues across learning. Furthermore, bidirectional optogenetic manipulation of these neurons reveals that stimulation of corticostriatal neurons promotes conditioned reward-seeking behaviour after learning, while activity in corticothalamic neurons suppresses both the acquisition and expression of conditioned reward seeking. These data show how prefrontal circuitry can dynamically control reward-seeking behaviour through the opposing activities of projection-specific cell populations.


Nature Neuroscience | 2017

Hormonal gain control of a medial preoptic area social reward circuit

Jenna A. McHenry; James M. Otis; Mark A. Rossi; J. Elliott Robinson; Oksana Kosyk; Noah W Miller; Zoe A. McElligott; Evgeny A. Budygin; David R. Rubinow; Garret D. Stuber

Neural networks that control reproduction must integrate social and hormonal signals, tune motivation, and coordinate social interactions. However, the neural circuit mechanisms for these processes remain unresolved. The medial preoptic area (mPOA), an essential node for social behaviors, comprises molecularly diverse neurons with widespread projections. Here we identify a steroid-responsive subset of neurotensin (Nts)-expressing mPOA neurons that interface with the ventral tegmental area (VTA) to form a socially engaged reward circuit. Using in vivo two-photon imaging in female mice, we show that mPOANts neurons preferentially encode attractive male cues compared to nonsocial appetitive stimuli. Ovarian hormone signals regulate both the physiological and cue-encoding properties of these cells. Furthermore, optogenetic stimulation of mPOANts–VTA circuitry promotes rewarding phenotypes, social approach and striatal dopamine release. Collectively, these data demonstrate that steroid-sensitive mPOA neurons encode ethologically relevant stimuli and co-opt midbrain reward circuits to promote prosocial behaviors critical for species survival.


Alcohol | 2011

The novel, selective, brain-penetrant neuropeptide Y Y2 receptor antagonist, JNJ-31020028, tested in animal models of alcohol consumption, relapse, and anxiety

Andrea Cippitelli; Amir H. Rezvani; J. Elliott Robinson; Lindsay Eisenberg; Edward D. Levin; Pascal Bonaventure; S. Timothy Motley; Timothy W. Lovenberg; Markus Heilig; Annika Thorsell

Neuropeptide Y (NPY) signaling has been shown to modulate stress responses and to be involved in regulation of alcohol intake and dependence. The present study explores the possibility that blockade of NPY Y2 autoreceptors using a novel, blood-brain barrier penetrant NPY Y2 receptor antagonist, JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), may achieve a therapeutically useful activation of the NPY system in alcohol- and anxiety-related behavioral models. We examined JNJ-31020028 in operant alcohol self-administration, stress-induced reinstatement to alcohol seeking, and acute alcohol withdrawal (hangover)-induced anxiety. Furthermore, we tested its effects on voluntary alcohol consumption in a genetic animal model of alcohol preference, the alcohol-preferring (P) rat. Neither systemic (0, 15, 30, and 40 mg/kg, subcutaneously [s.c.]) nor intracerebroventricular (0.0, 0.3, and 1.0 nmol/rat) administration of JNJ-31020028 affected alcohol-reinforced lever pressing or relapse to alcohol seeking behavior following stress exposure. Also, when its effects were tested on unlimited access to alcohol in P rats, preference for alcohol solution was transiently suppressed but without affecting voluntary alcohol intake. JNJ-31020028 (15 mg/kg, s.c.) did reverse the anxiogenic effects of withdrawal from a single bolus dose of alcohol on the elevated plus-maze, confirming the anxiolytic-like properties of NPY Y2 antagonism. Our data do not support Y2 antagonism as a mechanism for reducing alcohol consumption or relapse-like behavior, but the observed effects on withdrawal-induced anxiety suggest that NPY Y2 receptor antagonists may be a putative treatment for the negative affective states following alcohol withdrawal.


Biological Psychiatry | 2015

A Pharmacogenetic Determinant of Mu-Opioid Receptor Antagonist Effects on Alcohol Reward and Consumption: Evidence from Humanized Mice

Ainhoa Bilbao; J. Elliott Robinson; Markus Heilig; C. J. Malanga; Rainer Spanagel; Wolfgang H. Sommer; Annika Thorsell

BACKGROUND It has been proposed that therapeutic responses to naltrexone in alcoholism are moderated by variation at the mu-opioid receptor gene locus (OPRM1). This remains controversial because human results vary and no prospectively genotyped studies have been reported. We generated humanized mice carrying the respective human OPRM1 A118G alleles. Here, we used this model system to examine the role of OPRM1 A118G variation for opioid antagonist effects on alcohol responses. METHODS Effects of naltrexone on alcohol reward were examined using intracranial self-stimulation. Effects of naltrexone or nalmefene on alcohol intake were examined in continuous access home cage two-bottle free-choice drinking and operant alcohol self-administration paradigms. RESULTS Alcohol lowered brain stimulation reward thresholds in 118GG mice in a manner characteristic of rewarding drugs, and this effect was blocked by naltrexone. Brain stimulation reward thresholds were unchanged by alcohol or naltrexone in 118AA mice. In the home cage, increased alcohol intake emerged in 118GG mice with increasing alcohol concentrations and was 33% higher at 17% alcohol. At this concentration, naltrexone selectively suppressed alcohol intake in 118GG animals to a level virtually identical to that of 118AA mice. No effect of naltrexone was found in the latter group. Similarly, both naltrexone and nalmefene were more effective in suppressing operant alcohol self-administration in 118GG mice. CONCLUSIONS In a model that allows close experimental control, OPRM1 A118G variation robustly moderates effects of opioid antagonism on alcohol reward and consumption. These findings strongly support a personalized medicine approach to alcoholism treatment that takes into account OPRM1 genotype.


PLOS ONE | 2013

Changes in sensitivity of reward and motor behavior to dopaminergic, glutamatergic, and cholinergic drugs in a mouse model of fragile X syndrome.

Eric W. Fish; Michael C. Krouse; Sierra J. Stringfield; Jeffrey F. DiBerto; J. Elliott Robinson; C. J. Malanga

Fragile X syndrome (FXS) is a leading cause of intellectual disability. FXS is caused by loss of function of the FMR1 gene, and mice in which Fmr1 has been inactivated have been used extensively as a preclinical model for FXS. We investigated the behavioral pharmacology of drugs acting through dopaminergic, glutamatergic, and cholinergic systems in fragile X (Fmr1 -/Y) mice with intracranial self-stimulation (ICSS) and locomotor activity measurements. We also measured brain expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis. Fmr1 -/Y mice were more sensitive than wild type mice to the rewarding effects of cocaine, but less sensitive to its locomotor stimulating effects. Anhedonic but not motor depressant effects of the atypical neuroleptic, aripiprazole, were reduced in Fmr1 -/Y mice. The mGluR5-selective antagonist, 6-methyl-2-(phenylethynyl)pyridine (MPEP), was more rewarding and the preferential M1 antagonist, trihexyphenidyl, was less rewarding in Fmr1 -/Y than wild type mice. Motor stimulation by MPEP was unchanged, but stimulation by trihexyphenidyl was markedly increased, in Fmr1 -/Y mice. Numbers of midbrain TH+ neurons in the ventral tegmental area were unchanged, but were lower in the substantia nigra of Fmr1 -/Y mice, although no changes in TH levels were found in their forebrain targets. The data are discussed in the context of known changes in the synaptic physiology and pharmacology of limbic motor systems in the Fmr1 -/Y mouse model. Preclinical findings suggest that drugs acting through multiple neurotransmitter systems may be necessary to fully address abnormal behaviors in individuals with FXS.


Neuropsychopharmacology | 2015

Receptor Reserve Moderates Mesolimbic Responses to Opioids in a Humanized Mouse Model of the OPRM1 A118G Polymorphism

J. Elliott Robinson; Eyal Vardy; Jeffrey F. DiBerto; Vladimir I. Chefer; Kate L. White; Eric W. Fish; Meng Chen; Eduardo Gigante; Michael C. Krouse; Hui Sun; Annika Thorsell; Bryan L. Roth; Markus Heilig; C. J. Malanga

The OPRM1 A118G polymorphism is the most widely studied μ-opioid receptor (MOR) variant. Although its involvement in acute alcohol effects is well characterized, less is known about the extent to which it alters responses to opioids. Prior work has shown that both electrophysiological and analgesic responses to morphine but not to fentanyl are moderated by OPRM1 A118G variation, but the mechanism behind this dissociation is not known. Here we found that humanized mice carrying the 118GG allele (h/mOPRM1-118GG) were less sensitive than h/mOPRM1-118AA littermates to the rewarding effects of morphine and hydrocodone but not those of other opioids measured with intracranial self-stimulation. Reduced morphine reward in 118GG mice was associated with decreased dopamine release in the nucleus accumbens and reduced effects on GABA release in the ventral tegmental area that were not due to changes in drug potency or efficacy in vitro or receptor-binding affinity. Fewer MOR-binding sites were observed in h/mOPRM1-118GG mice, and pharmacological reduction of MOR availability unmasked genotypic differences in fentanyl sensitivity. These findings suggest that the OPRM1 A118G polymorphism decreases sensitivity to low-potency agonists by decreasing receptor reserve without significantly altering receptor function.


Brain Research | 2012

Orexin-1 receptor antagonism does not reduce the rewarding potency of cocaine in Swiss-Webster mice

Thorfinn T. Riday; Eric W. Fish; J. Elliott Robinson; Thomas M. Jarrett; Megan M. McGuigan; C. J. Malanga

The orexin family of hypothalamic neuropeptides has been implicated in reinforcement mechanisms relevant to both food and drug reward. Previous behavioral studies with antagonists at the orexin A-selective receptor, OX(1), have demonstrated its involvement in behavioral sensitization, conditioned place-preference, and self-administration of drugs of abuse. Adult male Swiss-Webster mice were implanted with stimulating electrodes to the lateral hypothalamus and trained to perform intracranial self-stimulation (ICSS). The effects of the OX(1)-selective antagonist SB 334867 on brain stimulation-reward (BSR) and cocaine potentiation of BSR were measured. SB 334867 (10-30mg/kg, i.p.) alone had no effect on ICSS performance or BSR threshold. Cocaine (1.0-30mg/kgi.p.) dose-dependently potentiated BSR, measured as lowering of BSR threshold. This effect was not blocked by 30mg/kg SB 334867 at any cocaine dose tested. In agreement with previous reports, SB 334867 resulted in a reduction of body weight 24h after acute administration. Based on these data, it is concluded that orexins acting at OX(1) do not contribute to BSR; and are not involved in the reward-potentiating actions of cocaine on BSR. The data are discussed in the context of prior findings of SB 334867 effects on drug-seeking and drug-consuming behaviors.


Behavioural Pharmacology | 2014

Levetiracetam results in increased and decreased alcohol drinking with different access procedures in C57BL/6J mice.

Eric W. Fish; Abigail E. Agoglia; Michael C. Krouse; R. Grant Muller; J. Elliott Robinson; C. J. Malanga

The antiepileptic levetiracetam (LEV) has been investigated for the treatment of alcohol abuse. However, little is known about how LEV alters the behavioral effects of alcohol in laboratory animals. The acute effects of LEV on alcohol drinking by male C57BL/6J mice were investigated using two different drinking procedures, limited access [drinking-in-the-dark (DID)] and intermittent access (IA) drinking. In the first experiment (DID), mice had access to a single bottle containing alcohol or sucrose for 4 h every other day. In the second experiment (IA), mice had IA to two bottles, one containing alcohol or sucrose and one containing water, for 24 h on Monday, Wednesday, and Friday. In both experiments, mice were administered LEV (0.3–100 mg/kg intraperitoneally) or vehicle 30 min before access to the drinking solutions. In the DID mice, LEV increased alcohol intake from 4.3 to 5.4 g/kg, whereas in the IA mice LEV decreased alcohol intake from 4.8 to 3.0 g/kg in the first 4 h of access and decreased 24 h alcohol intake from 20 to ∼15 g/kg. These effects appear specific to alcohol, as LEV did not affect sucrose intake in either experiment. LEV appears to differentially affect drinking in animal models of moderate and heavier alcohol consumption.

Collaboration


Dive into the J. Elliott Robinson's collaboration.

Top Co-Authors

Avatar

C. J. Malanga

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Eric W. Fish

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Michael C. Krouse

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jeffrey F. DiBerto

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Bryan L. Roth

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar

Kate L. White

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eyal Vardy

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Garret D. Stuber

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

James M. Otis

University of Wisconsin–Milwaukee

View shared research outputs
Researchain Logo
Decentralizing Knowledge