Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Emmett Duffy is active.

Publication


Featured researches published by J. Emmett Duffy.


Nature | 2012

Biodiversity loss and its impact on humanity

Bradley J. Cardinale; J. Emmett Duffy; Andrew Gonzalez; David U. Hooper; Charles Perrings; Patrick Venail; Anita Narwani; Georgina M. Mace; David Tilman; David A. Wardle; Ann P. Kinzig; Gretchen C. Daily; Michel Loreau; James B. Grace; Anne Larigauderie; Diane S. Srivastava; Shahid Naeem

The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world’s nations declared that human actions were dismantling the Earth’s ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.


Nature | 2006

Effects of biodiversity on the functioning of trophic groups and ecosystems

Bradley J. Cardinale; Diane S. Srivastava; J. Emmett Duffy; Justin P. Wright; Amy L. Downing; Mahesh Sankaran; Claire Jouseau

Over the past decade, accelerating rates of species extinction have prompted an increasing number of studies to reduce species diversity experimentally and examine how this alters the efficiency by which communities capture resources and convert those into biomass. So far, the generality of patterns and processes observed in individual studies have been the subjects of considerable debate. Here we present a formal meta-analysis of studies that have experimentally manipulated species diversity to examine how it affects the functioning of numerous trophic groups in multiple types of ecosystem. We show that the average effect of decreasing species richness is to decrease the abundance or biomass of the focal trophic group, leading to less complete depletion of resources used by that group. At the same time, analyses reveal that the standing stock of, and resource depletion by, the most species-rich polyculture tends to be no different from that of the single most productive species used in an experiment. Of the known mechanisms that might explain these trends, results are most consistent with what is called the ‘sampling effect’, which occurs when diverse communities are more likely to contain and become dominated by the most productive species. Whether this mechanism is widespread in natural communities is currently controversial. Patterns we report are remarkably consistent for four different trophic groups (producers, herbivores, detritivores and predators) and two major ecosystem types (aquatic and terrestrial). Collectively, our analyses suggest that the average species loss does indeed affect the functioning of a wide variety of organisms and ecosystems, but the magnitude of these effects is ultimately determined by the identity of species that are going extinct.


Nature | 2012

A global synthesis reveals biodiversity loss as a major driver of ecosystem change

David U. Hooper; E. Carol Adair; Bradley J. Cardinale; Jarrett E. Byrnes; Bruce A. Hungate; Kristin L. Matulich; Andrew Gonzalez; J. Emmett Duffy; Lars Gamfeldt; Mary I. O’Connor

Evidence is mounting that extinctions are altering key processes important to the productivity and sustainability of Earth’s ecosystems. Further species loss will accelerate change in ecosystem processes, but it is unclear how these effects compare to the direct effects of other forms of environmental change that are both driving diversity loss and altering ecosystem function. Here we use a suite of meta-analyses of published data to show that the effects of species loss on productivity and decomposition—two processes important in all ecosystems—are of comparable magnitude to the effects of many other global environmental changes. In experiments, intermediate levels of species loss (21–40%) reduced plant production by 5–10%, comparable to previously documented effects of ultraviolet radiation and climate warming. Higher levels of extinction (41–60%) had effects rivalling those of ozone, acidification, elevated CO2 and nutrient pollution. At intermediate levels, species loss generally had equal or greater effects on decomposition than did elevated CO2 and nitrogen addition. The identity of species lost also had a large effect on changes in productivity and decomposition, generating a wide range of plausible outcomes for extinction. Despite the need for more studies on interactive effects of diversity loss and environmental changes, our analyses clearly show that the ecosystem consequences of local species loss are as quantitatively significant as the direct effects of several global change stressors that have mobilized major international concern and remediation efforts.


Science | 2012

The Functions of Biological Diversity in an Age of Extinction

Shahid Naeem; J. Emmett Duffy; Erika S. Zavaleta

Environmental Determinism? Earths millions of species influence a wide range of environmental processes, including elemental cycling, the stability of ecosystems, and the goods and services they provide. Naeem et al. (p. 1401) review recent advances in the young and evolving field of biodiversity and ecosystem functioning, explore the extent to which the field is becoming a predictive science, and indicate how the field needs to develop in order to aid worldwide efforts to achieve environmental sustainability in the face of rising rates of extinction. Ecosystems worldwide are rapidly losing taxonomic, phylogenetic, genetic, and functional diversity as a result of human appropriation of natural resources, modification of habitats and climate, and the spread of pathogenic, exotic, and domestic plants and animals. Twenty years of intense theoretical and empirical research have shown that such biotic impoverishment can markedly alter the biogeochemical and dynamic properties of ecosystems, but frontiers remain in linking this research to the complexity of wild nature, and in applying it to pressing environmental issues such as food, water, energy, and biosecurity. The question before us is whether these advances can take us beyond merely invoking the precautionary principle of conserving biodiversity to a predictive science that informs practical and specific solutions to mitigate and adapt to its loss.


Ecological Monographs | 2000

STRONG IMPACTS OF GRAZING AMPHIPODS ON THE ORGANIZATION OF A BENTHIC COMMUNITY

J. Emmett Duffy; Mark E. Hay

Large brown seaweeds dominate coastal hard substrata throughout many of the worlds oceans. In coastal North Carolina, USA, this dominance by brown seaweeds is facilitated by omnivorous fishes, which feed both on red and green algae and on herbivorous amphipods that graze brown algae. When fish are removed in the field, brown seaweeds are replaced by red seaweeds, and herbivorous amphipods are more abundant. Using an array of large (;4000 L) outdoor mesocosms, we tested three mechanistic hypotheses for this pattern: fish feeding facilitates brown algal dominance (1) by removing red and green algal competitors, (2) by removing amphipods and reducing their feeding on brown sea- weeds, or (3) through an interaction of these mechanisms. Our experiments revealed strong impacts of both fish and amphipods, and a key role for the interaction, in structuring this community. When both fish and amphipods were removed (the latter with dilute insecticide), space was rapidly dominated and held for 17 weeks by fast-growing, primarily filamentous green algae. In contrast, when either fish, amphipods, or both were present, green algae were cropped to a sparse turf, and space was more rapidly dominated by larger macroalgae. The impacts of amphipods and fish on late-successional macroalgal assemblages were comparable in magnitude, but different in sign: red seaweeds prevailed in the amphipod- dominated treatment, whereas browns dominated in the presence of fish. Laboratory feeding assays and amphipod densities in the tanks suggested that the significant effects of am- phipods were attributable largely, if not exclusively, to the single amphipod species Am- pithoe longimana, which fed heavily on brown macroalgae. Our experimental removal of red and green algae failed to enhance cover of brown algae significantly; however, the latter reached substantially lower cover in the grazer-removal treatment, where green algae were very abundant, than in the fish-only treatment, where green algae were sparse. Thus, our results support the third hypothesis: fish-mediated dominance of brown algae involves both suppression of grazing amphipods and removal of algal competitors. Although collective impacts of fish and amphipods on this benthic community were generally comparable in magnitude, impacts normalized to each grazers aggregate biomass were consistently higher for amphipods than for fish, sometimes by 1-2 orders of magnitude. Thus, the impacts of grazing amphipods (specifically A. longimana) on the benthic community were both strong and disproportionate to their biomass. These experimental results imply that grazing am- phipods, which are ubiquitous in marine vegetation but poorly understood ecologically, may play important roles in the organization of benthic communities, particularly where predation pressure is low.


Ecology | 1987

Chemical defense against different marine herbivores: are amphipods insect equivalents?

Mark E. Hay; J. Emmett Duffy; Catherine A. Pfister; William Fenical

The Structurally similar diterpenoid alcohols pachydictyol-A and dictyol-E are produced by the brown seaweed Dictyota dichotoma. This seaweed and several related species that also produce these compounds are known to be relatively low preference foods for tropical fishes and urchins. We evaluated the effect of various concentrations of these compounds on feeding by the three common types of herbivores that co-occur with Dictyota in coastal North Carolina. Fish (Diplodus holbrooki), sea urchins (Arbacia punctulata), and a mixed species group of gammarid amphipods were offered pieces of the palatable seaweed Gracilaria tikvahiae coated with either (1) dictyol-E or pachydictyol-A dissolved in diethyl ether or (2) diethyl ether alone. Dictyol-E significantly reduced consumption by fish and urchins at concentrations of 0.5 and 1.0% of algal dry mass, but had no effect on amphipod grazing. Pachydictyol-A significantly reduced fish grazing at the relatively high concentrations of 1.0 and 1.3% of plant dry mass; at 0.5% it tended to decrease grazing, but the effect was not significant (P = .07). Pachydictyol-A had no effect on urchin grazing and significantly increased amphipod grazing. When Pachydictyol-A was fed to fish as 1.0% of food dry mass, their growth rate was reduced by a significant 48%. In feeding preference experiments with several seaweeds, Dictyota ranks low for fish and urchins but high for amphipods. This is consistent with the hypothesis that the secondary metabolites produced by Dictyota play a major role in determining its susceptibility to herbivores. The ability of amphipods to circumvent the chemical defenses (Dictyota, and the fact that the two species of algae most readily consumed by amphipods (Codium and Dictyota) were the two species least readily consumed by fish, suggest that predation and herbivory by fishes may be major factors selecting for amphipods that can live on, and eat, seaweeds that are unpalatable to fishes. Amphipods that fed on Dictyota did not appear to sequester the Dictyota metabolites; when exposed to fish predation, Dictyota-fed amphipods were eaten as readily as amphipods that had fed on an alga with no defensive chemistry. Tubicolous amphipods and other small marine herbivores that may spend significant portions of their lives on only a few plants my be under very different evolutionary constraints than the larger, more mobile herbivores that commonly moved between many plants. Several characteristics of these smaller, less mobile, and much less studied, marine herbivores suggest that they may be ecologically similar to terrestrial insects and may play a large, but presently unappreciated, role in structuring marine plant communities.


Marine Policy | 2010

Guiding ecological principles for marine spatial planning

Melissa M. Foley; Benjamin S. Halpern; Fiorenza Micheli; Matthew H. Armsby; Margaret R. Caldwell; Caitlin M. Crain; Erin Prahler; Nicole Rohr; Deborah Sivas; Michael W. Beck; Mark H. Carr; Larry B. Crowder; J. Emmett Duffy; Sally D. Hacker; Karen L. McLeod; Stephen R. Palumbi; Charles H. Peterson; Helen M. Regan; Mary Ruckelshaus; Paul A. Sandifer; Robert S. Steneck

The declining health of marine ecosystems around the world is evidence that current piecemeal governance is inadequate to successfully support healthy coastal and ocean ecosystems and sustain human uses of the ocean. One proposed solution to this problem is ecosystem-based marine spatial planning (MSP), which is a process that informs the spatial distribution of activities in the ocean so that existing and emerging uses can be maintained, use conflicts reduced, and ecosystem health and services protected and sustained for future generations. Because a key goal of ecosystem-based MSP is to maintain the delivery of ecosystem services that humans want and need, it must be based on ecological principles that articulate the scientifically recognized attributes of healthy, functioning ecosystems. These principles should be incorporated into a decision-making framework with clearly defined targets for these ecological attributes. This paper identifies ecological principles for MSP based on a synthesis of previously suggested and/or operationalized principles, along with recommendations generated by a group of twenty ecologists and marine scientists with diverse backgrounds and perspectives on MSP. The proposed four main ecological principles to guide MSP--maintaining or restoring: native species diversity, habitat diversity and heterogeneity, key species, and connectivity--and two additional guidelines, the need to account for context and uncertainty, must be explicitly taken into account in the planning process. When applied in concert with social, economic, and governance principles, these ecological principles can inform the designation and siting of ocean uses and the management of activities in the ocean to maintain or restore healthy ecosystems, allow delivery of marine ecosystem services, and ensure sustainable economic and social benefits.


Ecology | 1991

Food and Shelter as Determinants of Food Choice by an Herbivorous Marine Amphipod

J. Emmett Duffy; Mark E. Hay

Because food and habitat are closely linked for small herbivores that live on plants, food choice in the field may be constrained by the need to choose plants that provide safe living sites. We investigated the importance of food value and refuge value in determining the plant utilization patterns of the herbivorous marine amphipod Ampithoe longimana. When offered a choice of five common seaweeds, this amphipod fed most readily on Dictyota and Hypnea and less readily on Sargassum, Chondria, and Calonitophyllum. Rates of feeding on the different seaweeds were unrelated to seaweed gross morphology, toughness, nitrogen, or protein content. When cultured on each of these seaweeds in the laboratory, amphipod survivorship was high on Dictyota (82%), intermediate (35 and 18%, respectively) on Sargassum and Hypnea, and low (0%) on the other seaweeds. Survivorship on the different diets was strongly correlated (r = 0.930) with algal protein content; however, neither protein content nor amphipod performance on the different diets was significantly related to feeding rates on those diets. Additionally, amphipods from the three seaweed species that produced some survivors did not differ in growth rate, fecundity, egg size, or age at first ovulation. Variance in survivorship, and related measures, among sibling groups of amphipods suggested that this amphipod population possessed heritable variation for performance on the different seaweed species. In the field, abundance of A. longimana on the different species of algae was more clearly related to the preference of omnivorous fishes for these algae than to feeding rates of the amphipods when given those algae in the laboratory. A. longimana was more abun- dant on Dictyota and Sargassum (both unpalatable to omnivorous fishes), than on Hypnea, Chondria, and Calonitophyllum (all of which are palatable to fishes). During the season when omnivorous fishes were abundant, density of A. longimana increased on Dictyota, which is chemically defended from fishes, but decreased or remained unchanged on the seaweeds that are more palatable to fishes. Competition with other amphipods as a group did not appear to explain the distribution of A. longimana among seaweeds, since there were no negative correlations between A. longimana abundance and total amphipod abun- dance in any month. The lack of any consistent relationship between host-plant use in the field and either feeding preference or diet value, as measured by survivorship and repro- duction, suggests that host-plant use by A. longimana may be strongly constrained by requirements for shelter from predation.


Ecology | 2001

GRAZER DIVERSITY, FUNCTIONAL REDUNDANCY, AND PRODUCTIVITY IN SEAGRASS BEDS: AN EXPERIMENTAL TEST

J. Emmett Duffy; Kenneth S. Macdonald; Jennifer M. Rhode; John D. Parker

Concern over the accelerating loss of biodiversity has stimulated renewed interest in relationships among species richness, species composition, and the functional properties of ecosystems. Mechanistically, the degree of functional differentiation or com- plementarity among individual species determines the form of such relationships and is thus important to distinguishing among alternative hypotheses for the effects of diversity on ecosystem processes. Although a growing number of studies have reported relationships between plant diversity and ecosystem processes, few have explicitly addressed how func- tional diversity at higher trophic levels influences ecosystem processes. We used mesocosm experiments to test the impacts of three herbivorous crustacean species ( Gammarus mu- cronatus, Idotea baltica, and Erichsonella attenuata) on plant biomass accumulation, rel- ative dominance of plant functional groups, and herbivore secondary production in beds of eelgrass (Zostera marina), a dominant feature of naturally low-diversity estuaries throughout the northern hemisphere. By establishing treatments with all possible combi- nations of the three grazer species, we tested the degree of functional redundancy among grazers and their relative impacts on productivity. Grazer species composition strongly influenced eelgrass biomass accumulation and graz- er secondary production, whereas none of the processes we studied was clearly related to grazer species richness over the narrow range (0-3 species) studied. In fact, all three measured ecosystem processes—epiphyte grazing, and eelgrass and grazer biomass accu- mulation—reached highest values in particular single-species treatments. Experimental de- letions of individual species from the otherwise-intact assemblage confirmed that the three grazer species were functionally redundant in impacting epiphyte accumulation, whereas secondary production was sensitive to deletion of G. mucronatus, indicating its unique, nonredundant role in influencing this variable. In the field, seasonal abundance patterns differed markedly among the dominant grazer species, suggesting that complementary graz- er phenologies may reduce total variance in grazing pressure on an annual basis. Our results show that even superficially similar grazer species can differ in both sign and magnitude of impacts on ecosystem processes and emphasize that one must be cautious in assuming redundancy when assigning species to functional groups.


Ecology | 1994

Herbivore Resistance to Seaweed Chemical Defense: The Roles of Mobility and Predation Risk

J. Emmett Duffy; Mark E. Hay

Numerous small sedentary herbivores (mesograzers such as amphipods, small crabs, and gastropods) are resistant to seaweed secondary metabolites that deter larger, more mobile herbivorous fishes. In addition, specialist mesograzers experience reduced predation from fishes when living on seaweeds that produce these compounds. In this study we tested the hypothesis that generalist, as opposed to specialist, mesograzers can also benefit from reduced predation when they occupy chemically defended plants. Secondly, we assessed the hypothesis that low herbivore mobility, unconfounded by herbivore size or specialized feeding, selects for tolerance of seaweed chemical defenses, by comparing responses to the chemically defended brown seaweed Dictyota menstrualis of three sym- patric, generalist amphipods that differ in mobility (A mpithoe longimana, Ampithoe valida, and Gammarus mucronatus). Responses to Dictyotas chemical defenses varied as much among these three amphipods as among the phylogenetically distant fishes and mesograzers studied previously and sup- ported the hypothesis that less mobile herbivores should be most tolerant of plant chemical defenses. In laboratory experiments, A. longimana moved little, preferentially consumed Dictyota over other seaweeds, and was unaffected by all Dictyota secondary metabolites tested. In contrast, G. mucronatus was active, it did not feed on Dictyota, and two of three Dictyota secondary metabolites deterred its grazing. Distribution of amphipods in the field suggested that these feeding patterns affected amphipod risk of predation. A. longimana reached its highest abundance on Dictyota, which is unpalatable to omnivorous fish pred- ators, during the season when fish are most abundant. At the same time, the highly active G. mucronatus decreased to near extinction. Like G. mucronatus, A. valida was deterred by two Dictyota secondary metabolites, did not eat Dictyota, and disappeared when fishes were abundant. Experiments confirmed that A. longimana was less vulnerable to fish predation when occupying a chemically defended seaweed than when occupying a palatable seaweed. This decreased predation resulted primarily from a decreased frequency of encounter with pred- ators when amphipods were on chemically defended plants. When we experimentally equalized encounter rates between omnivorous pinfish (Lagodon rhomboides) and the seaweeds Dictyota menstrualis and Ulva curvata (unpalatable and palatable, respectively, to pinfish) in the laboratory, amphipods occupying these two plants were eaten at similar rates. In contrast, when live amphipods were affixed to Ulva and Dictyota and deployed in the field, amphipods survived only on Dictyota. Heavy fish grazing on Ulva in the latter experiment suggests that poor survival of amphipods on U/va may have resulted from greater detection and/or incidental ingestion of amphipods on this plant, due to frequent visitation by fishes. Infrequent visitation of Dictyota by foraging fish also may explain A. /ongimanas persistence through the summer on this chemically defended seaweed while the two Ulva-associated amphipods declined precipitously. These results (1) confirm that association with chemically defended plants can reduce predation on generalist, as well as specialist, herbivores and (2) suggest that preferential feeding on chemically defended plants is most likely for sedentary mesograzers because low mobility enhances the ability to exploit chemically defended seaweeds as refuges from fish predation.

Collaboration


Dive into the J. Emmett Duffy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Paul Richardson

Virginia Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

John F. Bruno

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Mark E. Hay

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

David U. Hooper

Western Washington University

View shared research outputs
Top Co-Authors

Avatar

James G. Douglass

Florida Gulf Coast University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge