J.F.C. Glatz
Maastricht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J.F.C. Glatz.
American Journal of Physiology-endocrinology and Metabolism | 1998
Arend Bonen; J. J. F. P. Luiken; S. Liu; D. J. Dyck; Bente Kiens; Søren Kristiansen; Lorraine P. Turcotte; G.J. van der Vusse; J.F.C. Glatz
We performed studies 1) to investigate the kinetics of palmitate transport into giant sarcolemmal vesicles, 2) to determine whether the transport capacity is greater in red muscles than in white muscles, and 3) to determine whether putative long-chain fatty acid (LCFA) transporters are more abundant in red than in white muscles. For these studies we used giant sarcolemmal vesicles, which contained cytoplasmic fatty acid binding protein (FABPc), an intravesicular fatty acid sink. Intravesicular FABPcconcentrations were sufficiently high so as not to limit the uptake of palmitate under conditions of maximal palmitate uptake (i.e., 4.5-fold excess in white and 31.3-fold excess in red muscle vesicles). All of the palmitate taken up was recovered as unesterified palmitate. Palmitate uptake was reduced by phloretin (-50%), sulfo- N-succinimidyl oleate (-43%), anti-plasma membrane-bound FABP (FABPpm, -30%), trypsin (-45%), and when incubation temperature was lowered to 0°C (-70%). Palmitate uptake was also reduced by excess oleate (-65%), but not by excess octanoate or by glucose. Kinetic studies showed that maximal transport was 1.8-fold greater in red vesicles than in white vesicles. The Michaelis-Menten constant in both types of vesicles was ∼6 nM. Fatty acid transport protein mRNA and fatty acid translocase (FAT) mRNA were about fivefold greater in red muscles than in white muscles. FAT/CD36 and FABPpm proteins in red vesicles or in homogenates were greater than in white vesicles or homogenates ( P < 0.05). These studies provide the first evidence of a protein-mediated LCFA transport system in skeletal muscle. In this tissue, palmitate transport rates are greater in red than in white muscles because more LCFA transporters are available.We performed studies 1) to investigate the kinetics of palmitate transport into giant sarcolemmal vesicles, 2) to determine whether the transport capacity is greater in red muscles than in white muscles, and 3) to determine whether putative long-chain fatty acid (LCFA) transporters are more abundant in red than in white muscles. For these studies we used giant sarcolemmal vesicles, which contained cytoplasmic fatty acid binding protein (FABPc), an intravesicular fatty acid sink. Intravesicular FABPc concentrations were sufficiently high so as not to limit the uptake of palmitate under conditions of maximal palmitate uptake (i.e., 4.5-fold excess in white and 31.3-fold excess in red muscle vesicles). All of the palmitate taken up was recovered as unesterified palmitate. Palmitate uptake was reduced by phloretin (-50%), sulfo-N-succinimidyl oleate (-43%), anti-plasma membrane-bound FABP (FABPpm, -30%), trypsin (-45%), and when incubation temperature was lowered to 0 degrees C (-70%). Palmitate uptake was also reduced by excess oleate (-65%), but not by excess octanoate or by glucose. Kinetic studies showed that maximal transport was 1.8-fold greater in red vesicles than in white vesicles. The Michaelis-Menten constant in both types of vesicles was approximately 6 nM. Fatty acid transport protein mRNA and fatty acid translocase (FAT) mRNA were about fivefold greater in red muscles than in white muscles. FAT/CD36 and FABPpm proteins in red vesicles or in homogenates were greater than in white vesicles or homogenates (P < 0.05). These studies provide the first evidence of a protein-mediated LCFA transport system in skeletal muscle. In this tissue, palmitate transport rates are greater in red than in white muscles because more LCFA transporters are available.
Heart | 1994
J.F.C. Glatz; Appie H. Kleine; F. A. Van Nieuwenhoven; Wim Th. Hermens; M. P. van Dieijen-Visser; G.J. van der Vusse
BACKGROUND--There are substantial amounts of cytoplasmic heart-type fatty-acid-binding protein (FABP) (15 kDa) in myocardial tissue. The rapid release of FABP into plasma during ischaemia indicates the possibility of using this protein as a biochemical marker for ischaemic myocardial injury. OBJECTIVE--To study the completeness of the release of FABP from damaged tissue in patients with acute myocardial infarction (AMI) and the suitability of serial plasma FABP concentrations for estimation of myocardial infarct size. METHODS--Immunochemically assayed FABP and enzymatically assayed creatine kinase isoenzyme MB (CK-MB) and alpha-hydroxybutyrate dehydrogenase (HBDH) were determined serially in plasma samples from 49 patients with AMI who had been treated with thrombolytic agents within six hours after the onset of AMI. Previously validated circulatory models and a value of 2.6 h-1 for the fractional clearance rate of FABP from plasma were used to calculate cumulative protein release into plasma. RESULTS--Release of FABP was completed earlier (24-36 h) after AMI than that of CK-MB (50-70 h) and that of HBDH (> 70 h). However, infarct size estimated from the cumulative release of the proteins and expressed as gram equivalents of healthy myocardium per litre of plasma yielded a comparable value of 4-6 for both FABP and the two enzymes. CONCLUSION--The data indicate that FABP released from the heart after AMI is quantitatively recovered in plasma and that FABP is a useful biochemical plasma marker for the estimation of myocardial infarct size in humans.
Biochimica et Biophysica Acta | 1988
J.F.C. Glatz; M. van Bilsen; RenéJ.A. Paulussen; J.H. Veerkamp; G.J. van der Vusse; Robert S. Reneman
The release of cardiac fatty acid-binding protein (cFABP) and of fatty acids from isolated rat hearts was measured during both reperfusion following 60 min of ischemia and the calcium paradox (readmission of Ca2+ after a period of Ca2+-free perfusion). Total cFABP release was much more pronounced after Ca2+ readmission (over 50% of tissue content) than during post-ischemic reperfusion (on average, 3% of tissue content), but in both cases, it closely paralleled the release of lactate dehydrogenase. Only minor amounts of long-chain fatty acids, if any, were released from the heart. These observations are challenging the idea that cFABP plays a fatty acid-buffering role under the pathophysiological conditions studied.
Lipids | 1999
J. J. F. P. Luiken; Frank G. Schaap; F. A. Van Nieuwenhoven; G.J. van der Vusse; Arend Bonen; J.F.C. Glatz
Despite the importance of long-chain fatty acids (FA) as fuels for heart and skeletal muscles, the mechanism of their cellular uptake has not yet been clarified. There is dispute as to whether FA are taken up by the muscle cellsvia passive diffusion and/or carrier-mediated transport. Kinetic studies of FA uptake by cardiac myocytes and the use of membrane protein-modifying agents have suggested the bulk of FA uptake is due to a protein component. Three membrane-associated FA-binding proteins were proposed to play a role in FA uptake, a 40-kDa plasma membrane FA-binding protein (FABPpm), an 88-kDa FA translocase (FAT/CD36), and a 60-kDa FA transport protein (FATP). In cardiac and skeletal myocytes the intracellular carrier for FA is cytoplasmic heart-type FA-binding protein (H-FABP), which likely transports FA from the sarcolemma to their intracellular sites of metabolism. A scenario is discussed in which FABPpm, FAT/CD36, and H-FABP, probably assisted by an albumin-binding protein, cooperate in the translocation of FA across the sarcolemma.
Prostaglandins Leukotrienes and Essential Fatty Acids | 1995
J.F.C. Glatz; Torsten Börchers; Friedrich Spener; Ger J. van der Vusse
Long-chain fatty acids and several of their metabolites have now been shown to be involved as primary or secondary messengers in specific cell signalling pathways. In view of their extremely low aqueous solubility, the extracellular as well as intracellular transport of these compounds is assumed to be facilitated by specific lipid binding proteins, such as cytoplasmic fatty acid-binding protein (FABP). In this paper a survey is given on the biological significance and possible modulatory action of intracellular lipid binding proteins for fatty acid-mediated signal transduction pathways.
Prostaglandins Leukotrienes and Essential Fatty Acids | 1993
J.F.C. Glatz; Michaël M. Vork; D.P. Cistola; G.J. van der Vusse
The cellular transport of long-chain fatty acid moieties is thought to be mediated by a plasmalemmal and a cytoplasmic fatty acid binding protein (FABPPM and FABPC, respectively) and a cytoplasmic acyl-coenzyme A binding protein (ACBP). Their putative main physiological significance is the assurance that long-chain fatty acids and derivatives, either in transit through membranes or present in intracellular compartments, are largely complexed to proteins. FABPC distinguishes from the other proteins in that distinct types of FABPC exist and that these are found in a variety of tissues in remarkable abundance, with some cells containing more than one type In addition, liver type FABPC binds not only fatty acids, but also several other hydrophobic ligands, including heme, bilirubin, prostaglandin E1 and lipoxygenase metabolites of arachidonic acid. Calculations made for rat cardiomyocytes reveal that the presence of FABPC substantially enhances the cytoplasmic solubility as well as the maximal diffusional flux of fatty acids in these cells. Apart from this putative function in the bulk transport of ligands, FABPC may also function in the fine-tuning of cellular events by modulating the metabolism of hydrophobic compounds implicated in the regulation of cell growth and differentiation.
Prostaglandins Leukotrienes and Essential Fatty Acids | 1997
J.F.C. Glatz; F. A. Van Nieuwenhoven; J. J. F. P. Luiken; Frank G. Schaap; G.J. van der Vusse
A number of membrane-associated and cytoplasmic fatty acid-binding proteins (FABPs) are now being implicated in the cellular uptake and intracellular transport of long-chain fatty acids (FA). These proteins each have the capacity of non-covalent binding of FA, are present in tissues actively involved in FA metabolism, and are upregulated in conditions of increased cellular FA metabolism. To date, five distinct membrane FABPs have been described, ranging in mass from 22 to 88 kDa and each showing a characteristic tissue distribution. Evidence for involvement in cellular fatty acid uptake has been provided for several of them, because it was recently found that isolated cell lines transfected with 88-kDa putative fatty acid translocase (FAT; homologous to CD36) or with 63-kDa fatty acid-transport protein show an increased rate of FA uptake. The (at least nine) FABPs of cytoplasmic origin belong to a family of small (14-15 kDa) lipid binding proteins, all having a similar tertiairy structure but differing in binding properties and in tissue occurrence. The biological functions of the various FABPs, possibly exerted in a concerted action among them, comprise solubilization and compartmentalization of FA, facilitation of the cellular uptake and intracellular trafficking of FA, and modulation of mitosis, cell growth, and cell differentiation. In addition, the FABPs have been suggested to participate in and/or modulate FA-mediated signal transduction pathways and FA regulation of gene expression, and to prevent local high FA concentrations thereby contributing to the protection of cells against the toxic effects of FA. In conclusion, long-chain fatty acids are subject to continuous interaction with multiple proteins, which interplay influences their cellular metabolism.
Prostaglandins Leukotrienes and Essential Fatty Acids | 1997
J.F.C. Glatz; Joost J. F. P. Luiken; F. A. Van Nieuwenhoven; G.J. van der Vusse
The molecular mechanism of the transport of long-chain fatty acids across cellular membranes and the necessity and precise functioning of specific proteins in this process are still unclear. Various alternative mechanisms have been proposed. Studies with artificial phospholipid bilayers support the concept that fatty acids may enter and traverse the plasma membrane without the involvement of proteins. On the other hand, a number of membrane-associated fatty acid-binding proteins (FABPs) have been described which putatively function as acceptors for fatty acids released from albumin or from lipoproteins. Albumin binding proteins located at the outer cell surface could play an additional role in the delivery of fatty acids. The subsequent transmembrane translocation of fatty acids could take place by a membrane protein acting as a translocase, or by simple diffusion of fatty acids through either the phospholipid bilayer or a pore or channel formed by one or more membrane fatty acid transporters. At the inner side of the plasma membrane, the fatty acid is bound to a cytoplasmic FABP, which serves to buffer the intracellular aqueous fatty acid concentration. The direction of fatty acid migration through the plasma membrane most likely is governed by the transmembrane gradient of fatty acid concentration, assisted to some extent and in selected tissues by co-transport of sodium ions. The intracellular transport of fatty acids from the plasma membrane to the sites of metabolic conversion (oxidation, esterification) or subcellular target (signal transduction) is greatly facilitated by cytoplasmic FABPs. In conclusion, cellular uptake and intracellular translocation of long-chain fatty acids is a multi-step process that is facilitated by various membrane-associated and soluble proteins. The mechanism of cellular uptake of fatty acids probably involves both a passive and carrier-mediated transmembrane translocation.
Diabetologia | 2010
Robert W. Schwenk; Ellen Dirkx; Will A. Coumans; Arend Bonen; A. Klip; J.F.C. Glatz; Joost J. F. P. Luiken
Aims/hypothesisUpon stimulation of insulin signalling or contraction-induced AMP-activated protein kinase (AMPK) activation, the glucose transporter GLUT4 and the long-chain fatty acid (LCFA) transporter CD36 similarly translocate from intracellular compartments to the plasma membrane of cardiomyocytes to increase uptake of glucose and LCFA, respectively. This similarity in regulation of GLUT4 traffic and CD36 traffic suggests that the same families of trafficking proteins, including vesicle-associated membrane proteins (VAMPs), are involved in both processes. While several VAMPs have been implicated in GLUT4 traffic, nothing is known about the putative function of VAMPs in CD36 traffic. Therefore, we compared the involvement of the myocardially produced VAMP isoforms in insulin- or contraction-induced GLUT4 and CD36 translocation.MethodsFive VAMP isoforms were silenced in HL-1 cardiomyocytes. The cells were treated with insulin or the contraction-like AMPK activator oligomycin or were electrically stimulated to contract. Subsequently, GLUT4 and CD36 translocation as well as substrate uptake were measured.ResultsThree VAMPs were demonstrated to be necessary for both GLUT4 and CD36 translocation, either specifically in insulin-treated cells (VAMP2, VAMP5) or in oligomycin/contraction-treated cells (VAMP3). In addition, there are VAMPs specifically involved in either GLUT4 traffic (VAMP7 mediates basal GLUT4 retention) or CD36 traffic (VAMP4 mediates insulin- and oligomycin/contraction-induced CD36 translocation).Conclusions/interpretationThe involvement of distinct VAMP isoforms in both GLUT4 and CD36 translocation indicates that CD36 translocation, just like GLUT4 translocation, is a vesicle-mediated process dependent on soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex formation. The ability of other VAMPs to discriminate between GLUT4 and CD36 translocation allows the notion that myocardial substrate preference can be modulated by these VAMPs.
Lipids | 1996
F. A. Van Nieuwenhoven; G.J. van der Vusse; J.F.C. Glatz
A number of cellular fatty acid-binding proteins are being implicated in the uptake and intracellular transport of long-chain fatty acids by parenchymal cells. Having been a topic of research for more than 20 years, cytoplasmic fatty acid-binding proteins now are assigned various pivotal functions in intracellular fatty acid transport and metabolism. More recently several membrane-associated fatty acid-binding proteins have been identified and these proteins are thought to function in the transmembrane transport of fatty acids. In this review, a short summary is provided of the latest developments in this research area.