J. F. Taylor
University of Missouri
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. F. Taylor.
Ticks and Tick-borne Diseases | 2016
Ntanganedzeni O. Mapholi; Azwihangwisi Maiwashe; Oswald Matika; Valentina Riggio; Stephen Bishop; Michael D. MacNeil; Cuthbert Banga; J. F. Taylor; K. Dzama
Ticks and tick-borne diseases are among the main causes of economic loss in the South African cattle industry through high morbidity and mortality rates. Concerns of the general public regarding chemical residues may tarnish their perceptions of food safety and environmental health when the husbandry of cattle includes frequent use of acaricides to manage ticks. The primary objective of this study was to identify single nucleotide polymorphism (SNP) markers associated with host resistance to ticks in South African Nguni cattle. Tick count data were collected monthly from 586 Nguni cattle reared in four herds under natural grazing conditions over a period of two years. The counts were recorded for six species of ticks attached in eight anatomical locations on the animals and were summed by species and anatomical location. This gave rise to 63 measured phenotypes or traits, with results for 12 of these traits being reported here. Tick count (x) data were transformed using log10(x+1) and the resulting values were examined for normality. DNA was extracted from hair and blood samples and was genotyped using the Illumina BovineSNP50 assay. After quality control (call rate >90%, minor allele frequency >0.02), 40,436 SNPs were retained for analysis. Genetic parameters were estimated and association analysis for tick resistance was carried out using two approaches: a genome-wide association (GWA) analysis using the GenABEL package and a regional heritability mapping (RHM) analysis. The Bonferroni genome-wide (P<0.05) corrected significance threshold was 1.24×10(-6), with 2.47×10(-5) as the suggestive significance threshold (P<0.10) (i.e., one false positive per genome scan) in the GWA analysis. Likelihood ratio test (LRT) thresholds for genome-wide and suggestive significance were 13.5 and 9.15 for the RHM analysis. Six ixodid tick species were identified, with Amblyomma hebraeum (the vector for Heartwater disease) being the dominant species. Heritability estimates (h(2)) from the fitted animal and sire models ranged from 0.02±0.00 to 0.17±0.04 for the transformed tick count data. Several genomic regions harbouring quantitative trait loci (QTL) were identified for different tick count traits by both the GWA and RHM approaches. Three genome-wide significant regions on chromosomes 7, 10 and 19 were identified for total tick count on the head, total body A. hebraeum tick count and total A. hebraeum on the perineum region, respectively. Additional regions significant at the suggestive level were identified on chromosomes 1, 3, 6, 7, 8, 10, 11, 12, 14, 15, 17, 19 and 26 for several of the traits. The GWA approach identified more genomic regions than did the RHM approach. The chromosomal regions identified here as harbouring QTL underlying variation in tick burden form the basis for further analyses to identify specific candidate genes and polymorphisms related to cattle tick resistance and provide the potential for marker-assisted selection in Nguni cattle.
Journal of Animal Science | 2012
K. L. Weber; Daniel J. Drake; J. F. Taylor; Dorian J. Garrick; L. A. Kuehn; R. M. Thallman; Robert D. Schnabel; W. M. Snelling; E.J. Pollak; A. L. Van Eenennaam
Several organizations have developed prediction models for molecular breeding values (MBV) for quantitative growth and carcass traits in beef cattle using Bovine SNP50 genotypes and phenotypic or EBV data. Molecular breeding values for Angus cattle have been developed by IGENITY, Pfizer Animal Genetics, and a collaboration between researchers from Iowa State University and the University of Missouri-Columbia (ISU/UMC). The U.S. Meat Animal Research Center (USMARC; Clay Center, NE) has also developed MBV for 16 cattle breeds using 2 multibreed populations, the Germplasm Evaluation (GPE) Program and the 2,000 Bull Project (2K(ALL)), and 2 single breed subpopulations of the 2,000 Bull Project, Angus (2K(AN)) and Hereford (2K(HH)). In this study, these MBV were assessed relative to commercial ranch EBV estimated from the progeny phenotypes of Angus bulls naturally mated in multisire breeding pastures to commercial cows: 121 for USMARC MBV, 99 for ISU/UMC MBV, and 29 for IGENITY and Pfizer MBV (selected based on number of progeny carcass records). Five traits were analyzed: weaning weight (WW), HCW, marbling score (MS), rib-eye muscle area (RE), and, for IGENITY and Pfizer only, feedlot ADG. The average accuracies of MBV across traits were 0.38 ± 0.05 for IGENITY, 0.61 ± 0.12 for Pfizer, 0.46 ± 0.12 for ISU/UMC, 0.16 ± 0.04 for GPE, 0.26 ± 0.05 for 2K(ALL), 0.24 ± 0.04 for 2K(AN), and 0.02 ± 0.12 for 2K(HH). Angus-based MBV (IGENITY, Pfizer, ISU/UMC, and 2K(AN)) explained larger proportions of genetic variance in this population than GPE, 2K(ALL), or 2K(HH) MBV for the same traits. In this data set, IGENITY, Pfizer, and ISU/UMC MBV were predictive of realized performance of progeny, and incorporation of that information into national genetic evaluations would be expected to improve EPD accuracy, particularly for young animals.
Heredity | 2016
Jared E. Decker; J. F. Taylor; Juha Kantanen; A Millbrooke; Robert D. Schnabel; Leeson J. Alexander; Michael D. MacNeil
Feral livestock may harbor genetic variation of commercial, scientific, historical or esthetic value. The origins and uniqueness of feral cattle on Chirikof Island, Alaska, are uncertain. The island is now part of the Alaska Maritime Wildlife Refuge and Federal wildlife managers want grazing to cease, presumably leading to demise of the cattle. Here we characterize the cattle of Chirikof Island relative to extant breeds and discern their origins. Our analyses support the inference that Yakut cattle from Russia arrived first on Chirikof Island, then ~120 years ago the first European taurine cattle were introduced to the island, and finally a large wave of Hereford cattle were introduced on average 40 years ago. In addition, this mixture of European and East-Asian cattle is unique compared with other North American breeds and we find evidence that natural selection in the relatively harsh environment of Chirikof Island has further impacted their genetic architecture. These results provide an objective basis for decisions regarding conservation of the Chirikof Island cattle.
Journal of Animal Science | 2017
J. N. Kiser; T. E. Lawrence; M. Neupane; Christopher M. Seabury; J. F. Taylor; James E. Womack; H. L. Neibergs
ABSTRACT Bovine respiratory disease (BRD) is an economically important disease of feedlot cattle that is caused by viral and bacterial pathogen members of the BRD complex. Many cases of subclinical BRD go untreated and are not detected until slaughter, when lung lesions are identified. The objectives of this study were to identify which BRD pathogens were associated with the presence of lung lesions at harvest and to identify genomic loci that were associated with susceptibility to lung lesions as defined by consolidation of the lung and/or the presence of fibrin tissue. Steers from a Colorado feedlot (n = 920) were tested for the presence of viral and bacterial pathogens using deep pharyngeal and mid-nasal swabs collected on entry into the study. Pathogen profiles were compared between cattle with or without lung consolidation (LC), fibrin tissue in the lung (FT), a combination of LC and FT in the same lung (lung lesions [LL]), and hyperinflated lungs (HIF) at harvest. Genotyping was conducted using the Illumina BovineHD BeadChip. Genomewide association analyses (GWAA) were conducted using EMMAX (efficient mixed-model association eXpedited), and pseudoheritabilities were estimated. The pathogen profile comparisons revealed that LC (P = 0.01, odds ratio [OR] = 3.37) and LL cattle (P = 0.04, OR = 4.58) were more likely to be infected with bovine herpes virus-1 and that HIF cattle were more likely to be infected with Mycoplasma spp. (P = 0.04, OR = 4.33). Pseudoheritability estimates were 0.25 for LC, 0.00 for FT, 0.28 for LL, and 0.13 for HIF. Because pseudoheritability for FT was estimated to be 0, GWAA results for FT were not reported. There were 4 QTL that were moderately associated (P < 1 × 10−5) with only LC, 2 that were associated with only LL, and 1 that was associated with LC and LL. Loci associated with HIF included 12 that were moderately associated and 3 that were strongly associated (uncorrected P < 5 × 10−7). A 24-kb region surrounding significant lead SNP was investigated to identify positional candidate genes. Many positional candidate genes underlying or flanking the detected QTL have been associated with signal transduction, cell adhesion, or gap junctions, which have functional relevance to the maintenance of lung health. The identification of pathogens and QTL associated with the presence of lung abnormalities in cattle exhibiting subclinical BRD allows the identification of loci that may not be detected through manifestation of clinical disease alone.
bioRxiv | 2017
Jesse L. Hoff; Jared E. Decker; Robert D. Schnabel; J. F. Taylor
Background If unmanaged, high rates of inbreeding in livestock populations adversely impact their reproductive fitness. In beef cattle, historical selection strategies have increased the frequency of several segregating fatal autosomal recessive polymorphisms. Selective breeding has also decreased the extent of haplotypic diversity genome-wide. By identifying haplotypes for which homozygotes are not observed but would be expected based on their frequency, developmentally lethal recessive loci can be localized. This analysis comes without the need for observation of the loss-associated phenotype (e.g., failure to implant, first trimester abortion, deformity at birth). In this study, haplotypes were estimated for 3,961 registered Angus individuals using 52,545 SNP loci using findhap v2, which exploited the complex pedigree among the individuals in this population. Results Seven loci were detected to possess haplotypes that were not observed in homozygous form despite a sufficiently high frequency and pedigree-based expectation of homozygote occurrence. These haplotypes were identified as candidates for harboring autosomal recessive lethal alleles. Of the genotyped individuals, 109 were resequenced to an average 27X depth of coverage to identify putative loss-of-function alleles genome-wide and had variants called using a custom in-house developed pipeline. For the candidate lethal-harboring haplotypes present in these bulls, sequence-called genotypes were used to identify concordant variants. In addition, whole-genome sequence imputation of variants was performed into the set of 3,961 genotyped animals using the 109 resequenced animals to identify candidate lethal recessive variants at the seven loci. Conclusions Selective breeding programs could utilize the predicted lethal haplotypes associated with SNP genotypes. Sequencing and other methods for identifying the causal variants underlying these haplotypes can allow for more efficient methods of management such as gene editing. These two methods in total will reduce the negative impacts of inbreeding on fertility and maximize overall genetic gains.
Animal Genetics | 2005
Robert D. Schnabel; Tad S. Sonstegard; J. F. Taylor; M. S. Ashwell
Genetics Selection Evolution | 2015
Sithembile O. Makina; Farai C. Muchadeyi; Este Van Marle-Koster; J. F. Taylor; Mahlako L. Makgahlela; Azwihangwisi Maiwashe
Animal Genetics | 1998
D. S. Gallagher; Ya-Ping Yang; J. D. Burzlaff; James E. Womack; David M. Stelly; Scott K. Davis; J. F. Taylor
Journal of Animal Science | 2017
J. N. Kiser; Stephen N. White; K. A. Johnson; J. L. Hoff; J. F. Taylor; H. L. Neibergs
Journal of Animal Science | 2017
J. N. Kiser; Stephen N. White; K. A. Johnson; Jesse L. Hoff; J. F. Taylor; H. L. Neibergs