J.F. Willart
university of lille
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J.F. Willart.
Molecular Pharmaceutics | 2008
J.F. Willart; M. Descamps
Amorphous solids are conventionally formed by supercooling liquids or by concentrating noncrystallizing solutes (spray-drying and freeze-drying). However, a lot of pharmaceutical processes may also directly convert compounds from crystal to noncrystal which may have desired or undesired consequences for their stability. The purpose of this short review paper is (i) to illustrate the possibility to amorphize one compound by several different routes (supercooling, dehydration of hydrate, milling, annealing of metastable crystalline forms), (ii) to examine factors that favor crystal to glass rather than crystal to crystal transformations, (iii) to discuss the role of possible amorphous intermediates in solid-solid conversions induced by milling, (iv) to address the issue of chemical stability in the course of solid state amorphization, (v) to discuss the nature of the amorphous state obtained by the nonconventional routes, (vi) to show the effect of milling conditions on glasses properties, and (vii) to attempt to rationalize the observed transformations using the concepts of effective temperature introduced in nonequilibrium physics.
Solid State Communications | 2001
J.F. Willart; A. De Gusseme; S. Hemon; G. Odou; Florence Danède; M. Descamps
Structural and thermodynamic changes in the organic molecular crystal of trehalose upon high energy ball milling have been studied. The investigations have been performed by X-ray diffraction and by differential scanning calorimetry. The results show that mechanical milling induces a direct transformation from crystal to glass. It is underlined that glassy amorphous trehalose can also be produced by two other independent routes: the thermal quench of the liquid state and the dehydration of the dihydrate form of trehalose. This makes trehalose a promising molecular crystal for the fundamental study of the solid state amorphization processes themselves.
Journal of Chemical Physics | 2006
Alain Hédoux; R. Ionov; J.F. Willart; Adrien Lerbret; F. Affouard; Yannick Guinet; M. Descamps; D. Prévost; Laurent Paccou; Florence Danède
Raman spectroscopy (in the low-frequency range and the amide I band region) and modulated differential scanning calorimetry investigations have been used to analyze temperature-induced structural changes in lysozyme dissolved in 1H2O and 2H2O in the thermal denaturation process. Low-frequency Raman data reveal a change in tertiary structure without concomitant unfolding of the secondary structure. Calorimetric data show that this structural change is responsible for the configurational entropy change associated with the strong-to-fragile liquid transition and correspond to about 1/3 of the native-denaturated transition enthalpy. This is the first stage of the thermal denaturation which is a precursor of the secondary structure change and is determined to be strongly dependent on the stability of the hydrogen-bond network in water. Low-frequency Raman spectroscopy provides information on the flexibility of the tertiary structure (in the native state and the transient folding state) in relation to the fragility of the mixture. The unfolding of the secondary structure appears as a consequence of the change in the tertiary structure and independent of the solvent. Protein conformational stability is directly dependent on the stability of the native tertiary structure. The structural transformation of tertiary structure can be detected through the enhanced 1H/2H exchange inhibited in native proteins. Taking into account similar features reported in the literature observed for different proteins it can be considered that the two-stage transformation observed in lysozyme dissolved in water is a general mechanism for the thermal denaturation of proteins.
Molecular Pharmaceutics | 2013
Aurélien Mahieu; J.F. Willart; Emeline Dudognon; Florence Danède; M. Descamps
In this paper we present a new protocol to determine faster the solubility of drugs into polymer matrixes. The originality of the method lies in the fact that the equilibrium saturated states are reached by demixing of supersaturated amorphous solid solutions and not by dissolution of crystalline drug into the amorphous polymer matrix as for usual methods. The equilibrium saturated states are thus much faster to reach due to the extra molecular mobility resulting from the strong plasticizing effect associated with the supersaturation conditions. The method is validated using the indomethacin/polyvinylpyrrolidone mixture whose solubility diagram was previously determined by usual techniques. The supersaturated states have been directly obtained in the solid state by comilling, and the investigations have been performed by differential scanning calorimetry and powder X-ray diffraction.
European Journal of Pharmaceutical Sciences | 2009
Alain Hédoux; Laurent Paccou; Yannick Guinet; J.F. Willart; M. Descamps
This paper gives a detailed analysis of the low-frequency Raman spectrum (LFRS) in the 5-250cm(-1) region, corresponding to collective vibrations, in the crystalline forms and in the amorphous state of indomethacin (IMC). This study points out the high sensitivity of the LFRS to detect, identify and evaluate the first traces of crystallization in comparison with high-frequency regions where internal vibration bands are detected. This analysis reveals that amorphous IMC prepared by cryogrinding instantaneously partially crystallizes at room temperature in the stable gamma phase, well below T(g)=43 degrees C. A method based on the treatment of the LFRS to determine precise and very low volume of crystallized material within amorphous matrix is described and used to analyze the crystallization kinetics of ground amorphous IMC powder. This study demonstrates that Raman spectroscopy is also a well-adapted technique to point out small amount of amorphous state in crystalline matrix. Crystallization of ground IMC powder was also analyzed by isothermal microcalorimetry experiments, which is one of the most widely used methods to analyze isothermal crystallization and to evaluate crystallinity.
Carbohydrate Research | 2011
Vincent Caron; J.F. Willart; Ronan Lefort; Patrick Derollez; Florence Danède; M. Descamps
It has been previously reported that α-lactose could be totally amorphized by ball milling. In this paper we report a detailed investigation of the structural and microstructural changes by which this solid state amorphization takes place. The investigations have been performed by Powder X-ray Diffraction, Solid State Nuclear Magnetic Resonance ((13)C CP-MAS) and Differential Scanning Calorimetry. The results reveal the structural complexity of the material in the course of its amorphization so that it cannot be considered as a simple mixture made of a decreasing crystalline fraction and an increasing amorphous fraction. Heating this complexity can give rise to a fully nano-crystalline material. The results also show that chemical degradations upon heating are strongly connected to the melting process.
Acta Crystallographica Section B-structural Science | 2005
Cyril Platteau; Jacques Lefebvre; F. Affouard; J.F. Willart; Patrick Derollez; Franck Mallet
The stable anhydrous form of α-lactose has been obtained by the dehydration of α-lactose monohydrate in methanol. An X-ray powder diffraction pattern was recorded at room temperature with a laboratory diffractometer equipped with an INEL curved sensitive detector CPS120. The starting structural model of this form was found by a Monte-Carlo simulated annealing method. The structure was obtained through Rietveld refinements and the minimization of crystalline energy for the localization of the H atoms of the hydroxyl groups. Soft restraints were applied to bond lengths and angles. Networks of O—H⋯O hydrogen bonds account for the crystalline cohesion. A comparison is made between the hydrogen-bond networks of this form and those of the monohydrate and hygroscopic anhydrous forms of α-lactose.
Journal of Pharmaceutical Sciences | 2012
J.F. Willart; L. Carpentier; Florence Danède; M. Descamps
The thermodynamic, dynamic, and structural changes of crystalline griseofulvin upon high-energy ball milling at room temperature have been studied. The investigations have been performed by differential scanning calorimetry (DSC), dielectric relaxation spectroscopy, and powder X-ray diffraction. The results indicate that this compound undergoes a direct crystal-to-glass transformation upon milling, whereas no glass transition can be clearly detected upon heating because of the exceptional sub-glass transition temperature (T(g) ) recrystallization of the milled sample. This intrinsic difficulty for characterizing the glassy state has been overcome using three independent strategies: (i) comparison of the evolutions upon milling of both the crystalline powder and the quenched liquid, (ii) use of fast DSC to delay the recrystallization event, and (iii) search for dielectric β relaxations typical of glasses in the milled compound.
Acta Crystallographica Section B-structural Science | 2005
Jacques Lefebvre; J.F. Willart; Vincent Caron; Ronan Lefort; F. Affouard; Florence Danède
The mixed form of α/β lactose was obtained by heating amorphous α-lactose at 443 K. NMR spectroscopy determined the stoichiometry of this mixed compound to be 1/1. The X-ray powder diffraction pattern was recorded at room temperature with a sensitive curved detector (CPS 120). The structure was solved by real-space methods (simulated annealing) followed by Rietveld refinements with soft constraints on bond lengths and bond angles. The H atoms of the hydroxyl groups were localized by minimization of the crystalline energy. The cell of 1/1 α/β lactose is triclinic with the space group P1 and contains two molecules (one molecule of each anomer). The crystalline cohesion is achieved by networks of O—H⋯O hydrogen bonds. The width of the Bragg peaks is interpreted through a microstructural approach in terms of isotropic strain effects and anisotropic size effects.
Journal of Chemical Physics | 1996
J.F. Willart; M. Descamps; N. Benzakour
The glassy crystalline state designates the frozen state of the rotator phase of some molecular crystals. These systems are very suitable for investigating the vitrification and the crystallization processes as well as the interrelations between these two processes. This paper sheds light on this problem through a kinetic investigation of the glass forming plastic crystal (cyanoadamantane)1−x (chloroadamantane)x for x=0.25. A careful study of both the equilibrium phase diagram and the mode of transformation upon deep quenching conditions has been performed by time resolved x‐ray diffraction and differential scanning calorimetry in a variety of thermal treatments. The results reveal a complex kinetic behavior corresponding to the imbrication of the kinetics toward two low temperature phases: (IV) and (III). Phase (IV) is found to be metastable with respect to phase (III) and only appears upon specific thermal treatments which are clearly established. The conditions in which the monotropic transition betwee...