J. Falcón-Barroso
University of La Laguna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Falcón-Barroso.
Monthly Notices of the Royal Astronomical Society | 2006
Michele Cappellari; Roland Bacon; Martin Bureau; M.C. Damen; Roger L. Davies; P. T. de Zeeuw; Eric Emsellem; J. Falcón-Barroso; Davor Krajnović; Harald Kuntschner; Richard M. McDermid; Reynier F. Peletier; Marc Sarzi; Remco C. E. van den Bosch; Glenn van de Ven
We investigate the well-known correlations between the dynamical mass-to-light ratio M/L and other global observables of elliptical (E) and lenticul ar (S0) galaxies. We construct twointegral Jeans and three-integral Schwarzschild dynamical models for a sample of 25 E/S0 galaxies with SAURON integral-field stellar kinematics to about one effective (h alf-light) radius Re. They have well-calibrated I-band Hubble Space TelescopeWFPC2 and large-field ground-based photometry, accurate surface brightness fluc tuation distances, and their observed kinematics is consistent with an axisymmetric intrinsic sh ape. All these factors result in an unprecedented accuracy in the M/L measurements. We find a tight correlation of the form (M/L) = (3.80 ± 0.14) × (σe/200 km s 1 ) 0.84±0.07 between the M/L (in the I-band) measured from the dynamical models and the luminosity-weighted second moment σe of the lineof-sight velocity-distribution within Re. The observed rms scatter in M/L for our sample is 18%, while the inferred intrinsic scatter is � 13%. The (M/L)‐σe relation can be included in the remarkable series of tight correlations between σe and other galaxy global observables. The comparison of the observed correlations with the predictions of the Fundamental Plane (FP), and with simple virial estimates, shows that the ‘tilt ’ of the FP of early-type galaxies, describing the deviation of the FP from the virial relation, is almost exclusively due to a real M/L variation, while structural and orbital non-homology have a negligible effect. When the photometric parameters are determined in the ‘classic’ way , using growth curves, and the σe is measured in a large aperture, the virial mass appears to be a reliable estimator of the mass in the central regions of galaxies, and can be safely used where more ‘expensive’ models are not feasible (e.g. in high redshift studies). In this case th e best-fitting virial relation has the form (M/L)vir = (5.0±0.1)×Reσ 2 e/(L G), in reasonable agreement with simple theoretical predictions. We find no difference between the M/L of the galaxies in clusters and in the field. The comparison of the dynamical M/L with the (M/L)pop inferred from the analysis of the stellar population, indicates a median dark matter fractio n in early-type galaxies of � 30% of the total mass inside one Re, in broad agreement with previous studies, and it also shows that the stellar initial mass function varies little among d ifferent galaxies. Our results suggest a variation in M/L at constant (M/L)pop, which seems to be linked to the galaxy dynamics. We speculate that fast rotating galaxies have lower dark matte r fractions than the slow rotating and generally more massive ones. If correct, this would suggest a connection between the galaxy assembly history and the dark matter halo structure. The tightness of our correlation provides some evidence against cuspy nuclear dark matter profiles in g alaxies.
Monthly Notices of the Royal Astronomical Society | 2006
Patricia Sanchez-Blazquez; Reynier F. Peletier; J. Jiménez-Vicente; N. Cardiel; A. J. Cenarro; J. Falcón-Barroso; J. Gorgas; S. O. Selam; A. Vazdekis
A new stellar library developed for stellar population synt hesis modeling is presented. The library consist of 985 stars spanning a large range in atmosphe ric parameters. The spectra were obtained at the 2.5m INT telescope and cover the range λλ 3525–7500̊A at 2.3Å (FWHM) spectral resolution. The spectral resolution, spectral ty pe coverage, flux calibration accuracy and number of stars represent a substantial improvement ove r previous libraries used in population synthesis models.
Monthly Notices of the Royal Astronomical Society | 2010
A. Vazdekis; P. Sánchez-Blázquez; J. Falcón-Barroso; A. J. Cenarro; Mike A. Beasley; N. Cardiel; J. Gorgas; Reynier F. Peletier
We present synthetic spectral energy distributions (SEDs) for single-age, single-metallicity stellar populations (SSPs) covering the full optical spectral range at moderately high resolution [full width at half-maximum (FWHM) = 2.3A]. These SEDs constitute our base models, as they combine scaled-solar isochrones with an empirical stellar spectral library [Medium resolution INT Library of Empirical Spectra (MILES)], which follows the chemical evolution pattern of the solar neighbourhood. The models rely as much as possible on empirical ingredients, not just on the stellar spectra, but also on extensive photometric libraries, which are used to determine the transformations from the theoretical parameters of the isochrones to observational quantities. The unprecedented stellar parameter coverage of the MILES stellar library allowed us to safely extend our optical SSP SED predictions from intermediate- to very-old-age regimes and the metallicity coverage of the SSPs from super-solar to [M/H] = -2.3. SSPs with such low metallicities are particularly useful for globular cluster studies. We have computed SSP SEDs for a suite of initial mass function shapes and slopes. We provide a quantitative analysis of the dependence of the synthesized SSP SEDs on the (in)complete coverage of the stellar parameter space in the input library that not only shows that our models are of higher quality than those of other works, but also in which range of SSP parameters our models are reliable. The SSP SEDs are a useful tool to perform the analysis of stellar populations in a very flexible manner. Observed spectra can be studied by means of full spectrum fitting or by using line indices. For the latter, we propose a new line index system to avoid the intrinsic uncertainties associated with the popular Lick/IDS system and provide more appropriate, uniform, spectral resolution. Apart from constant resolution as a function of wavelength, the system is also based on flux-calibrated spectra. Data can be analysed at three different resolutions: 5, 8.4 and 14A (FWHM), which are appropriate for studying globular cluster, low- and intermediate-mass galaxies, and massive galaxies, respectively. Furthermore, we provide polynomials to transform current Lick/IDS line index measurements to the new system. We provide line index tables in the new system for various popular samples of Galactic globular clusters and galaxies. We apply the models to various stellar clusters and galaxies with high-quality spectra, for which independent studies are available, obtaining excellent results. Finally, we designed a web page from which not only these models and stellar libraries can be downloaded but which also provides a suite of on-line tools to facilitate the handling and transformation of the spectra.
Monthly Notices of the Royal Astronomical Society | 2007
Eric Emsellem; Michele Cappellari; Davor Krajnović; Glenn van de Ven; Roland Bacon; Martin Bureau; Roger L. Davies; P. T. de Zeeuw; J. Falcón-Barroso; Harald Kuntschner; Richard M. McDermid; Reynier F. Peletier; Marc Sarzi
Two-dimensional stellar kinematics of 48 representative elliptical (E) and lenticular (S0) galaxies obtained with the SAURON integral-field spectrograph reveal that early-type galaxies appear in two broad flavours, depending on whether they exhibit clear large-scale rotation or not. We define a new parameter lambda(R) equivalent to / , which involves luminosity-weighted averages over the full two-dimensional kinematic field as a proxy to quantify the observed projected stellar angular momentum per unit mass. We use it as a basis for a new kinematic classification: early-type galaxies are separated into slow and fast rotators, depending on whether they have lambda(R) values within their effective radius R(e) below or above 0.1, respectively. Slow and fast rotators are shown to be physically distinct classes of galaxies, a result which cannot simply be the consequence of a biased viewing angle. Fast rotators tend to be relatively low-luminosity galaxies with M(B) greater than or similar to-20.5. Slow rotators tend to be brighter and more massive galaxies, but are still spread over a wide range of absolute magnitude. Three slow rotators of our sample, among the most massive ones, are consistent with zero rotation. Remarkably, all other slow rotators (besides the atypical case of NGC 4550) contain a large kpc-scale kinematically decoupled core (KDC). All fast rotators (except one galaxy with well-known irregular shells) show well-aligned photometric and kinemetric axes, and small velocity twists, in contrast with most slow rotators which exhibit significant misalignments and velocity twists. These results are supported by a supplement of 18 additional early-type galaxies observed with SAURON. In a companion paper (Paper X), we also show that fast and slow rotators are distinct classes in terms of their orbital distribution. We suggest that gas is a key ingredient in the formation and evolution of fast rotators, and that the slowest rotators are the extreme evolutionary end point reached deep in gravitational potential wells where dissipationless mergers had a major role in the evolution, and for which most of the baryonic angular momentum was expelled outwards. Detailed numerical simulations in a cosmological context are required to understand how to form large-scale KDCs within slow rotators, and more generally to explain the distribution of lambda(R) values within early-type galaxies and the distinction between fast and slow rotators.
Monthly Notices of the Royal Astronomical Society | 2007
Michele Cappellari; Eric Emsellem; R. Bacon; Martin Bureau; Roger L. Davies; P. T. de Zeeuw; J. Falcón-Barroso; Davor Krajnović; Harald Kuntschner; Richard M. McDermid; Reynier F. Peletier; Marc Sarzi; Remco C. E. van den Bosch; Glenn van de Ven
We analyse the orbital distribution of elliptical (E) and lenticular (S0) galaxies using SAURON integral-field stellar kinematics within about one effective (half-light) radius. We construct the anisotropy diagram, which relates the ratio of the ordered and random motion in a galaxy (V/sigma) to its observed ellipticity (epsilon), for the 48 E/S0 galaxies from the SAURON survey. For a subsample of 24 galaxies consistent with axisymmetry, we use three-integral axisymmetric Schwarzschild dynamical models to recover the detailed orbital distribution, and we find good agreement with the anisotropy derived from the (V/sigma, epsilon) diagram. In a companion paper (Paper IX), we show that the early-type galaxies can be subdivided into two classes of systems with or without a significant amount of specific stellar angular momentum. Here, we show that the two classes have different distributions on the (V/sigma, epsilon) diagram. The slow rotators are more common among the most massive systems and are generally classified as E from photometry alone. Those in our sample tend to be fairly round(epsilon less than or similar to 0.3), but can have significant kinematical misalignments, indicating that as a class they are moderately triaxial, and span a range of anisotropies (delta less than or similar to 0.3). The fast rotators are generally fainter and are classified as either E or S0. They can appear quite flattened (epsilon less than or similar to 0.7), do not show significant kinematical misalignments (unless barred or interacting), indicating they are nearly axisymmetric and span an even larger range of anisotropies (delta less than or similar to 0.5). These results are confirmed when we extend our analysis to 18 additional E/S0 galaxies observed with SAURON. The dynamical models indicate that the anisotropy inferred from the (V/sigma, epsilon) diagram is due to a flattening of the velocity ellipsoid in the meridional plane (sigma(R) > sigma(z)), which we quantify with the beta anisotropy parameter. We find a trend of increasing beta for intrinsically flatter galaxies. A number of the fast rotators show evidence for containing a flattened, kinematically distinct component, which in some cases counter-rotates relative to the main galaxy body. These components are generally more metal rich than the galaxy body. All these results support the idea that fast rotators are nearly oblate and contain disc-like components. The role of gas must have been important for their formation. The slow rotators are weakly triaxial. Current collisionless merger models seem unable to explain their detailed observed properties.
Monthly Notices of the Royal Astronomical Society | 2010
Harald Kuntschner; Eric Emsellem; Roland Bacon; Michele Cappellari; Roger L. Davies; P. Tim de Zeeuw; J. Falcón-Barroso; Davor Krajnović; Richard M. McDermid; Reynier F. Peletier; Marc Sarzi; Kristen L. Shapiro; Remco C. E. van den Bosch; Glenn van de Ven
We present a stellar population analysis of the absorption line strength maps for 48 early-type galaxies from the SAURON sample. Using the line strength index maps of H beta, Fe5015 and Mgb, measured in the Lick/IDS system and spatially binned to a constant signal-to-noise ratio, together with predictions from up-to-date stellar population models, we estimate the simple stellar population-equivalent (SSP-equivalent) age, metallicity and abundance ratio [alpha/Fe] over a two-dimensional field extending up to approximately one effective radius. A discussion of calibrations and differences between model predictions is given. Maps of SSP-equivalent age, metallicity and abundance ratio [alpha/Fe] are presented for each galaxy. We find a large range of SSP-equivalent ages in our sample, of which similar to 40 per cent of the galaxies show signs of a contribution from a young stellar population. The most extreme cases of post-starburst galaxies, with SSP-equivalent ages of The flattened components with disc-like kinematics previously identified in all fast rotators are shown to be connected to regions of distinct stellar populations. These range from the young, still star-forming circumnuclear discs and rings with increased metallicity preferentially found in intermediate-mass fast rotators, to apparently old structures with extended disc-like kinematics, which are observed to have an increased metallicity and mildly depressed [alpha/Fe] ratio compared to the main body of the galaxy. The slow rotators, often harbouring kinematically decoupled components (KDC) in their central regions, generally show no stellar population signatures over and above the well-known metallicity gradients in early-type galaxies and are largely consistent with old (>= 10 Gyr) stellar populations. Using radially averaged stellar population gradients we find in agreement with Spolaor et al. a mass-metallicity gradient relation where low-mass fast rotators form a sequence of increasing metallicity gradient with increasing mass. For more massive systems (above similar to 3.5 x 10(10) M-circle dot) there is an overall downturn such that metallicity gradients become shallower with increased scatter at a given mass leading to the most massive systems being slow rotators with relatively shallow metallicity gradients. The observed shallower metallicity gradients and increased scatter could be a consequence of the competition between different star formation and assembly scenarios following a general trend of diminishing gas fractions and more equal-mass mergers with increasing mass, leading to the most massive systems being devoid of ordered motion and signs of recent star formation.
Monthly Notices of the Royal Astronomical Society | 2010
Marc Sarzi; Joseph C. Shields; Kevin Schawinski; Hyunjin Jeong; Kristen L. Shapiro; Roland Bacon; Martin Bureau; Michele Cappellari; Roger L. Davies; P. Tim de Zeeuw; Eric Emsellem; J. Falcón-Barroso; Davor Krajnović; Harald Kuntschner; Richard M. McDermid; Reynier F. Peletier; Remco C. E. van den Bosch; Glen van den Ven; Sukyoung K. Yi
Following our study on the incidence, morphology and kinematics of the ionised gas in early-type galaxies we now address the question of what is powering the observed nebular
The Astrophysical Journal | 2011
Katherine Alatalo; Leo Blitz; Lisa M. Young; Timothy A. Davis; Martin Bureau; Laura A. Lopez; Michele Cappellari; Nicholas Scott; Kristen L. Shapiro; Alison F. Crocker; S. Martín; Maxime Bois; Frédéric Bournaud; Roger L. Davies; P. T. de Zeeuw; P.-A. Duc; Eric Emsellem; J. Falcón-Barroso; Sadegh Khochfar; Davor Krajnović; Harald Kuntschner; P. Y. Lablanche; Richard M. McDermid; Raffaella Morganti; Thorsten Naab; Tom Oosterloo; Marc Sarzi; Paolo Serra; Anne-Marie Weijmans
We report the discovery of a powerful molecular wind from the nucleus of the non-interacting nearby S0 field galaxy NGC 1266. The single-dish CO profile exhibits emission to ?400?km?s?1 and requires a nested Gaussian fit to be properly described. Interferometric observations reveal a massive, centrally concentrated molecular component with a mass of 1.1 ? 109 M ? and a molecular outflow with a molecular mass of 2.4 ? 107 M ?. The molecular gas close to the systemic velocity consists of a rotating, compact nucleus with a mass of about 4.1 ? 108 M ? within a radius of 60?pc. This compact molecular nucleus has a surface density of 2.7 ? 104 M ??pc?2, more than two orders of magnitude larger than that of giant molecular clouds in the disk of the Milky Way, and it appears to sit on the Kennicutt-Schmidt relation despite its extreme kinematics and energetic activity. We interpret this nucleus as a disk that confines the outflowing wind. A mass outflow rate of 13 M ? yr?1 leads to a depletion timescale of 85 Myr. The star formation in NGC 1266 is insufficient to drive the outflow, and thus it is likely driven by the active galactic nucleus. The concentration of the majority of the molecular gas in the central 100?pc requires an extraordinary loss of angular momentum, but no obvious companion or interacting galaxy is present to enable the transfer. NGC 1266 is the first known outflowing molecular system that does not show any evidence of a recent interaction.
Astronomy and Astrophysics | 2011
J. Falcón-Barroso; P. Sánchez-Blázquez; A. Vazdekis; E. Ricciardelli; N. Cardiel; A. J. Cenarro; J. Gorgas; Reynier F. Peletier
Aims: We present a number of improvements to the MILES library and stellar population models. We correct some small errors in the radial velocities of the stars, measure the spectral resolution of the library and models more accurately, and give a better absolute flux calibration of the models. Methods: We use cross-correlation techniques to correct the radial velocities of the offset stars and the penalised pixel-fitting method, together with different sets of stellar templates, to re-assess the spectral resolution of the MILES stellar library and models. We have also re-calibrated the zero-point flux level of the models using a new calibration scheme. Results: The end result is an even more homogeneously calibrated stellar library than the originally released one, with a measured spectral resolution of ~2.5 A, almost constant with wavelength, for both the MILES stellar library and models. Furthermore, the new absolute flux calibration for the spectra excellently agrees with predictions based on independent photometric libraries. Conclusions: This improved version of the MILES library and models (version 9.1) is available at the projects website (http://miles.iac.es).
Monthly Notices of the Royal Astronomical Society | 2006
Harald Kuntschner; Eric Emsellem; Roland Bacon; Martin Bureau; Michele Cappellari; Roger L. Davies; P. T. de Zeeuw; J. Falcón-Barroso; Davor Krajnović; Richard M. McDermid; Reynier F. Peletier; Marc Sarzi
We present absorption line strength maps of 48 representative elliptical and lenticular galaxies obtained as part of a survey of nearby galaxies using our custom-built integral-field spectrograph, SAURON, operating on the William Herschel Telescope. Using high-quality spectra, spatially binned to a constant signal-to-noise, we measure four key age, metallicity and abundance ratio sensitive indices from the Lick/IDS system over a two-dimensional field extending up to approximately one effective radius. A discussion of calibrations and offsets is given, as well as a description of error estimation and nebular emission correction. We modify the classical Fe5270 index to define a new index, Fe5270 S, which maximizes the usable spatial coverage ofSAURON. Maps of H�, Fe5015, Mgb and Fe5270S are presented for each galaxy. We use the maps to compute average line strengths integrated over circular apertures of oneeighth effective radius, and compare the resulting relatio ns of index versus velocity dispersion with previous long-slit work. The metal line strength maps show generally negative gradients with increasing radius roughly consistent with the morphology of the light profiles. Remarkable deviations from this general trend exist, particularl y the Mgb isoindex contours appear to be flatter than the isophotes of the surface brightness for ab out 40% of our galaxies without significant dust features. Generally these galaxies exhibi t significant rotation. We infer from this that the fast-rotating component features a higher met allicity and/or an increased Mg/Fe