J.G. Pérez-Pérez
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J.G. Pérez-Pérez.
Irrigation Science | 2008
J.G. Pérez-Pérez; Pascual Romero; Josefa M. Navarro; Pablo Botía
We evaluated the effects of a deficit-irrigation (DI) strategy in mature ‘Lane late’ sweet orange (Citrus sinensis (L.) Osb.) trees grafted on two different drought-tolerant rootstocks, ‘Cleopatra’ mandarin (Citrus reshni Hort. ex Tanaka) and ‘Carrizo’ citrange (Citrus sinensis (L.) Osbeck x Poncirus trifoliata L.). Two treatments were applied: a control treatment, irrigated at 100% of crop evapotranspiration (ETc) during the entire season, and a DI treatment, irrigated at 100% ETc, except during phases I (initial fruit-growth period,) and phase III (final fruit-growth period, ripening, harvest), when no irrigation was applied. Flowering, fruit abscission and fruit growth of trees on ‘Carrizo’ were more affected by DI than on ‘Cleopatra’. Deficit irrigation reduced yield in both rootstocks due mainly to a decrease in the number of fruits. The phase most sensitive to drought stress was phase I. Moreover, DI altered fruit quality depending on the period when drought stress was applied. Fruit quality was modified by DI: total soluble sugars and titratable acidity increased when a severe drought stress occurred only in phase III but only increased the peel/pulp ratio if it occurred only in phase I. The quality of fruits from trees on ‘Carrizo’ under DI was affected more than that of fruits from trees on ‘Cleopatra’. Under DI in semi-arid regions ‘Cleopatra’ mandarin can mitigate more the negative effects of drought stress on yield and fruit quality than ‘Carrizo’ citrange.
Journal of Experimental Botany | 2015
Ian C. Dodd; Jaime Puértolas; Katrin Huber; J.G. Pérez-Pérez; Hannah R. Wright; Martin Blackwell
Soil drying and re-wetting (DRW) occurs at varying frequencies and intensities during crop production, and is deliberately used in water-saving irrigation techniques that aim to enhance crop water use efficiency. Soil drying not only limits root water uptake which can (but not always) perturb shoot water status, but also alters root synthesis of phytohormones and their transport to shoots to regulate leaf growth and gas exchange. Re-wetting the soil rapidly restores leaf water potential and leaf growth (minutes to hours), but gas exchange recovers more slowly (hours to days), probably mediated by sustained changes in root to shoot phytohormonal signalling. Partial rootzone drying (PRD) deliberately irrigates only part of the rootzone, while the remainder is allowed to dry. Alternating these wet and dry zones (thus re-wetting dry soil) substantially improves crop yields compared with maintaining fixed wet and dry zones or conventional deficit irrigation, and modifies phytohormonal (especially abscisic acid) signalling. Alternate wetting and drying (AWD) of rice can also improve yield compared with paddy culture, and is correlated with altered phytohormonal (including cytokinin) signalling. Both PRD and AWD can improve crop nutrition, and re-wetting dry soil provokes both physical and biological changes which affect soil nutrient availability. Whether this alters crop nutrient uptake depends on competition between plant and microbes for nutrients, with the rate of re-wetting determining microbial dynamics. Nevertheless, studies that examine the effects of soil DRW on both crop nutritional and phytohormonal responses are relatively rare; thus, determining the cause(s) of enhanced crop yields under AWD and PRD remains challenging.
Functional Plant Biology | 2012
J.G. Pérez-Pérez; Ian C. Dodd; Pablo Botía
To determine whether irrigation strategy altered the sensitivity of Citrus leaf gas exchange to soil, plant and atmospheric variables, mature (16-year-old) Fino 49 lemon trees (Citrus limon (L.) Burm. fil. grafted on Citrus macrophylla Wester) were exposed to three irrigation treatments: control (irrigated with 100% of crop potential evapotranspiration, ETc), deficit irrigation (DI) and partial rootzone drying (PRD) treatments,which received 75% ETc during the period of highest evaporative demand and 50% ETc otherwise. Furthermore, to assess the physiological significance of root-to-shoot ABA signalling, the seasonal dynamics of leaf xylem ABA concentration ([X-ABA]leaf) were evaluated over two soil wetting-drying cycles during a 2-week period in summer. Although stomatal conductance (gs) declined with increased leaf-to-air vapour pressure deficit (LAVPD), lower leaf water potential and soil water availability, [X-ABA]leaf was only related to stomatal closure in well irrigated trees under moderate (<2.5kPa) atmospheric vapour pressure deficit (VPD). Differences in [X-ABA]leaf were not detected between treatments either before or immediately after (<12h) rewatering the dry side of PRD trees. Leaf water potential was higher in control trees, but decreased similarly in all irrigation treatments as daily LAVPD increased. In contrast, DI and PRD trees showed lower stomatal sensitivity to LAVPD than control trees. Although DI and PRD decreased stomatal conductance and photosynthesis, these treatments did not significantly decrease yield, but PRD increased crop water use efficiency (WUE) by 83% compared with control trees. Thus PRD-induced enhancement of crop WUE in a semiarid environment seems to involve physiological mechanisms other than increased [X-ABA]leaf.
Food Chemistry | 2015
Josefa M. Navarro; Pablo Botía; J.G. Pérez-Pérez
The irrigation necessities for grapefruit production are very high. Due to the scarcity of water resources, growers use deficit irrigation (DI) - which could affect the fruit quality. Different DI strategies were studied: Control (irrigated at 100% ETc) and T1, T2 and T3 (50% ETc at phases I, II and III of fruit growth, respectively). Strategy T1 only delayed external maturation depending on the duration of the water stress. High water stress in T2 delayed fruit maturation, increased acidity and reduced the sugar concentration. Under T2, trees suffering moderate water stress showed increased flavonoid and phenolic contents but decreased lycopene levels. External maturation was delayed in T3 when severe stress occurred during the first part of phase III. Strategy T3 advanced internal ripening when moderate water stress occurred during the first 40 days of phase III, increasing sugar accumulation, promoted by the high acidity of the fruits. Moderate water stress also increased β-carotene, flavonoids and phenolics levels.
Functional Plant Biology | 2014
Pascual Romero; J.G. Pérez-Pérez; Francisco M. del Amor; Adrián Martinez-Cutillas; Ian C. Dodd; Pablo Botía
Regulated deficit irrigation (RDI) and partial root zone irrigation (PRI) were compared for 4 years at two irrigation volumes (110mm year-1 (1) and 78mm year-1 (2)) in field-grown grafted Monastrell grapevines (Vitis vitifera L.) to distinguish the effects of deficit irrigation from specific PRI effects. PRI-1 and RDI-1 vines received ~30% of the crop evapotranspiration (ETc) from budburst to fruit set, 13-15% from fruit set to veraison and 20% from veraison to harvest. RDI-2 and PRI-2 vines received around 20% of ETc from budburst to fruit set, no irrigation from fruit set to veraison, and recovery (21-24% ETc) thereafter. Compared with RDI-1, PRI-1 increased irrigation depth and total soil water (θv) availability in the root zone, and stimulated greater fine root growth and water uptake. Increased soil volume exploration supported greater canopy water use, vegetative development, biomass accumulation and internal water storage capacity. PRI-1 vines had higher stomatal conductance, lower leaf-level water use efficiency and increased leaf xylem sap concentration ([X-ABA]leaf) following reirrigation. Compared with RDI-2, PRI-2 decreased total θv availability, fine root growth and water uptake, gas exchange, leaf water status, [X-ABA]leaf, biomass accumulation and storage capacity. Xylem ABA decreased with total θv availability in PRI-2, probably from limited sap flow when θv in drying soil was low (≈20%). For this rootstock-scion combination, high irrigation volumes applied to the wet part of the roots (θv>30%) are critical for increasing root-to-shoot ABA signalling and growth, and improving performance under semiarid conditions.
Journal of Experimental Botany | 2015
J.G. Pérez-Pérez; Ian C. Dodd
Highlight Following drying and re-wetting events during partial rootzone drying irrigation, xylem ABA concentration was best explained by accounting for sap fluxes from both parts of the rootzone.
Frontiers in Plant Science | 2015
Luis Galvez-Sola; Francisco García-Sánchez; J.G. Pérez-Pérez; Vicente Gimeno; Josefa M. Navarro; R. Moral; Juan J. Martínez-Nicolás; Manuel Nieves
Sufficient nutrient application is one of the most important factors in producing quality citrus fruits. One of the main guides in planning citrus fertilizer programs is by directly monitoring the plant nutrient content. However, this requires analysis of a large number of leaf samples using expensive and time-consuming chemical techniques. Over the last 5 years, it has been demonstrated that it is possible to quantitatively estimate certain nutritional elements in citrus leaves by using the spectral reflectance values, obtained by using near infrared reflectance spectroscopy (NIRS). This technique is rapid, non-destructive, cost-effective and environmentally friendly. Therefore, the estimation of macro and micronutrients in citrus leaves by this method would be beneficial in identifying the mineral status of the trees. However, to be used effectively NIRS must be evaluated against the standard techniques across different cultivars. In this study, NIRS spectral analysis, and subsequent nutrient estimations for N, K, Ca, Mg, B, Fe, Cu, Mn, and Zn concentration, were performed using 217 leaf samples from different citrus trees species. Partial least square regression and different pre-processing signal treatments were used to generate the best estimation against the current best practice techniques. It was verified a high proficiency in the estimation of N (Rv = 0.99) and Ca (Rv = 0.98) as well as achieving acceptable estimation for K, Mg, Fe, and Zn. However, no successful calibrations were obtained for the estimation of B, Cu, and Mn.
Acta Horticulturae | 2015
J.G. Pérez-Pérez; Antonio G. Gómez-Gómez; Pablo Botía; Javier Brumos; Manuel Talon; José M. Colmenero-Flores
11 paginas.-- 3 figuras.-- 2 tablas.-- 32 referencias.-- Articulo publicado en XII International Citrus Congress - International Society of Citriculture
Physiologia Plantarum | 2007
Francisco Garcı́a-Sánchez; James P. Syvertsen; Vicente Gimeno; Pablo Botía; J.G. Pérez-Pérez
Tree Physiology | 2006
Pascual Romero; Josefa M. Navarro; J.G. Pérez-Pérez; Francisco García-Sánchez; A. Gómez-Gómez; I. Porras; Vicente Martínez; Pablo Botía