J. Gage Crump
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Gage Crump.
Developmental Biology | 2012
Daniel Meulemans Medeiros; J. Gage Crump
Patterning of the vertebrate facial skeleton involves the progressive partitioning of neural-crest-derived skeletal precursors into distinct subpopulations along the anteroposterior (AP) and dorsoventral (DV) axes. Recent evidence suggests that complex interactions between multiple signaling pathways, in particular Endothelin-1 (Edn1), Bone Morphogenetic Protein (BMP), and Jagged-Notch, are needed to pattern skeletal precursors along the DV axis. Rather than directly determining the morphology of individual skeletal elements, these signals appear to act through several families of transcription factors, including Dlx, Msx, and Hand, to establish dynamic zones of skeletal differentiation. Provocatively, this patterning mechanism is largely conserved from mouse and zebrafish to the jawless vertebrate, lamprey. This implies that the diversification of the vertebrate facial skeleton, including the evolution of the jaw, was driven largely by modifications downstream of a conversed pharyngeal DV patterning program.
Development | 2011
Courtney Alexander; Elizabeth Zuniga; Ira L. Blitz; Naoyuki Wada; Pierre Le Pabic; Yashar Javidan; Tailin Zhang; Ken W.Y. Cho; J. Gage Crump; Thomas F. Schilling
Bone morphogenetic proteins (BMPs) play crucial roles in craniofacial development but little is known about their interactions with other signals, such as Endothelin 1 (Edn1) and Jagged/Notch, which pattern the dorsal-ventral (DV) axis of the pharyngeal arches. Here, we use transgenic zebrafish to monitor and perturb BMP signaling during arch formation. With a BMP-responsive transgene, Tg(Bre:GFP), we show active BMP signaling in neural crest (NC)-derived skeletal precursors of the ventral arches, and in surrounding epithelia. Loss-of-function studies using a heat shock-inducible, dominant-negative BMP receptor 1a [Tg(hs70I:dnBmpr1a-GFP)] to bypass early roles show that BMP signaling is required for ventral arch development just after NC migration, the same stages at which we detect Tg(Bre:GFP). Inhibition of BMP signaling at these stages reduces expression of the ventral signal Edn1, as well as ventral-specific genes such as hand2 and dlx6a in the arches, and expands expression of the dorsal signal jag1b. This results in a loss or reduction of ventral and intermediate skeletal elements and a mis-shapen dorsal arch skeleton. Conversely, ectopic BMP causes dorsal expansion of ventral-specific gene expression and corresponding reductions/transformations of dorsal cartilages. Soon after NC migration, BMP is required to induce Edn1 and overexpression of either signal partially rescues ventral skeletal defects in embryos deficient for the other. However, once arch primordia are established the effects of BMPs become restricted to more ventral and anterior (palate) domains, which do not depend on Edn1. This suggests that BMPs act upstream and in parallel to Edn1 to promote ventral fates in the arches during early DV patterning, but later acquire distinct roles that further subdivide the identities of NC cells to pattern the craniofacial skeleton.
Development | 2010
Elizabeth Zuniga; Frank Stellabotte; J. Gage Crump
The development of the vertebrate face relies on the regionalization of neural crest-derived skeletal precursors along the dorsoventral (DV) axis. Here we show that Jagged-Notch signaling ensures dorsal identity within the hyoid and mandibular components of the facial skeleton by repressing ventral fates. In a genetic screen in zebrafish, we identified a loss-of-function mutation in jagged 1b (jag1b) that results in dorsal expansion of ventral gene expression and partial transformation of the dorsal hyoid skeleton to a ventral morphology. Conversely, misexpression of human jagged 1 (JAG1) represses ventral gene expression and dorsalizes the ventral hyoid and mandibular skeletons. We further show that jag1b is expressed specifically in dorsal skeletal precursors, where it acts through the Notch2 receptor to activate hey1 expression. Whereas Jagged-Notch positive feedback propagates jag1b expression throughout the dorsal domain, Endothelin 1 (Edn1) inhibits jag1b and hey1 expression in the ventral domain. Strikingly, reduction of Jag1b or Notch2 function partially rescues the ventral defects of edn1 mutants, indicating that Edn1 promotes facial skeleton development in part by inhibiting Jagged-Notch signaling in ventral skeletal precursors. Together, these results indicate a novel function of Jagged-Notch signaling in ensuring dorsal identity within broad fields of facial skeletal precursors.
Development | 2010
Mai Yamamoto; Ryoko Morita; Takamasa Mizoguchi; Hiromi Matsuo; Miho Isoda; Tohru Ishitani; Ajay B. Chitnis; Kunihiro Matsumoto; J. Gage Crump; Katsuto Hozumi; Shigenobu Yonemura; Koichi Kawakami; Motoyuki Itoh
In the developing embryo, cell-cell signalling is necessary for tissue patterning and structural organization. During midline development, the notochord plays roles in the patterning of its surrounding tissues while forming the axial structure; however, how these patterning and structural roles are coordinated remains elusive. Here, we identify a mechanism by which Notch signalling regulates the patterning activities and structural integrity of the notochord. We found that Mind bomb (Mib) ubiquitylates Jagged 1 (Jag1) and is essential in the signal-emitting cells for Jag1 to activate Notch signalling. In zebrafish, loss- and gain-of-function analyses showed that Mib-Jag1-Notch signalling favours the development of non-vacuolated cells at the expense of vacuolated cells in the notochord. This leads to changes in the peri-notochordal basement membrane formation and patterning surrounding the muscle pioneer cells. These data reveal a previously unrecognized mechanism regulating the patterning and structural roles of the notochord by Mib-Jag1-Notch signalling-mediated cell-fate determination.
The EMBO Journal | 2014
Albert D. Kim; Chase Melick; Wilson Clements; David L. Stachura; Martin Distel; Daniela Panáková; Calum A. MacRae; Lindsey Mork; J. Gage Crump; David Traver
Hematopoietic stem cells (HSCs) require multiple molecular inputs for proper specification, including activity of the Notch signaling pathway. A requirement for the Notch1 and dispensability of the Notch2 receptor has been demonstrated in mice, but the role of the remaining Notch receptors has not been investigated. Here, we demonstrate that three of the four Notch receptors are independently required for the specification of HSCs in the zebrafish. The orthologues of the murine Notch1 receptor, Notch1a and Notch1b, are each required intrinsically to fate HSCs, just prior to their emergence from aortic hemogenic endothelium. By contrast, the Notch3 receptor is required earlier within the developing somite to regulate HSC emergence in a non‐cell‐autonomous manner. Epistatic analyses demonstrate that Notch3 function lies downstream of Wnt16, which is required for HSC specification through its regulation of two Notch ligands, dlc and dld. Collectively, these findings demonstrate for the first time that multiple Notch signaling inputs are required to specify HSCs and that Notch3 performs a novel role within the somite to regulate the neighboring precursors of hemogenic endothelium.
Development | 2011
Elizabeth Zuniga; Marie Rippen; Courtney Alexander; Thomas F. Schilling; J. Gage Crump
Patterning of the upper versus lower face involves generating distinct pre-skeletal identities along the dorsoventral (DV) axes of the pharyngeal arches. Whereas previous studies have shown roles for BMPs, Endothelin 1 (Edn1) and Jagged1b-Notch2 in DV patterning of the facial skeleton, how these pathways are integrated to generate different skeletal fates has remained unclear. Here, we show that BMP and Edn1 signaling have distinct roles in development of the ventral and intermediate skeletons, respectively, of the zebrafish face. Using transgenic gain-of-function approaches and cell-autonomy experiments, we find that BMPs strongly promote hand2 and msxe expression in ventral skeletal precursors, while Edn1 promotes the expression of nkx3.2 and three Dlx genes (dlx3b, dlx5a and dlx6a) in intermediate precursors. Furthermore, Edn1 and Jagged1b pattern the intermediate and dorsal facial skeletons in part by inducing the BMP antagonist Gremlin 2 (Grem2), which restricts BMP activity to the ventral-most face. We therefore propose a model in which later cross-inhibitory interactions between BMP and Edn1 signaling, in part mediated by Grem2, separate an initially homogenous ventral region into distinct ventral and intermediate skeletal precursor domains.
PLOS Genetics | 2012
Ankita Das; J. Gage Crump
Cranial neural crest cells (CNCCs) have the remarkable capacity to generate both the non-ectomesenchyme derivatives of the peripheral nervous system and the ectomesenchyme precursors of the vertebrate head skeleton, yet how these divergent lineages are specified is not well understood. Whereas studies in mouse have indicated that the Twist1 transcription factor is important for ectomesenchyme development, its role and regulation during CNCC lineage decisions have remained unclear. Here we show that two Twist1 genes play an essential role in promoting ectomesenchyme at the expense of non-ectomesenchyme gene expression in zebrafish. Twist1 does so by promoting Fgf signaling, as well as potentially directly activating fli1a expression through a conserved ectomesenchyme-specific enhancer. We also show that Id2a restricts Twist1 activity to the ectomesenchyme lineage, with Bmp activity preferentially inducing id2a expression in non-ectomesenchyme precursors. We therefore propose that the ventral migration of CNCCs away from a source of Bmps in the dorsal ectoderm promotes ectomesenchyme development by relieving Id2a-dependent repression of Twist1 function. Together our model shows how the integration of Bmp inhibition at its origin and Fgf activation along its migratory route would confer temporal and spatial specificity to the generation of ectomesenchyme from the neural crest.
Developmental Biology | 2012
Bartosz Balczerski; Megan Matsutani; Pablo Castillo; Nick Osborne; Didier Y. R. Stainier; J. Gage Crump
Development of the head skeleton involves reciprocal interactions between cranial neural crest cells (CNCCs) and the surrounding pharyngeal endoderm and ectoderm. Whereas elegant experiments in avians have shown a prominent role for the endoderm in facial skeleton development, the relative functions of the endoderm in growth versus regional identity of skeletal precursors have remained unclear. Here we describe novel craniofacial defects in zebrafish harboring mutations in the Sphingosine-1-phospate (S1P) type 2 receptor (s1pr2) or the S1P transporter Spinster 2 (spns2), and we show that S1P signaling functions in the endoderm for the proper growth and positioning of the jaw skeleton. Surprisingly, analysis of s1pr2 and spns2 mutants, as well as sox32 mutants that completely lack endoderm, reveals that the dorsal-ventral (DV) patterning of jaw skeletal precursors is largely unaffected even in the absence of endoderm. Instead, we observe reductions in the ectodermal expression of Fibroblast growth factor 8a (Fgf8a), and transgenic misexpression of Shha restores fgf8a expression and partially rescues the growth and differentiation of jaw skeletal precursors. Hence, we propose that the S1P-dependent anterior foregut endoderm functions primarily through Shh to regulate the growth but not DV patterning of zebrafish jaw precursors.
Developmental Cell | 2013
Chong Pyo Choe; Andres Collazo; Le A. Trinh; Luyuan Pan; Cecilia B. Moens; J. Gage Crump
The pharyngeal pouches, which form by budding of the foregut endoderm, are essential for segmentation of the vertebrate face. To date, the cellular mechanism and segmental nature of such budding have remained elusive. Here, we find that Wnt11r and Wnt4a from the head mesoderm and ectoderm, respectively, play distinct roles in the segmental formation of pouches in zebrafish. Time-lapse microscopy, combined with mutant and tissue-specific transgenic experiments, reveal requirements of Wnt signaling in two phases of endodermal epithelial transitions. Initially, Wnt11r and Rac1 destabilize the endodermal epithelium to promote the lateral movement of pouch-forming cells. Next, Wnt4a and Cdc42 signaling induce the rearrangement of maturing pouch cells into bilayers through junctional localization of the Alcama immunoglobulin-domain protein, which functions to restabilize adherens junctions. We propose that this dynamic control of epithelial morphology by Wnt signaling may be a common theme for the budding of organ anlagen from the endoderm.
PLOS Genetics | 2012
Samuel G. Cox; Hyun Jung Kim; Aaron T. Garnett; Daniel Meulemans Medeiros; Woojin An; J. Gage Crump
The neural crest (NC) is a vertebrate-specific cell population that exhibits remarkable multipotency. Although derived from the neural plate border (NPB) ectoderm, cranial NC (CNC) cells contribute not only to the peripheral nervous system but also to the ectomesenchymal precursors of the head skeleton. To date, the developmental basis for such broad potential has remained elusive. Here, we show that the replacement histone H3.3 is essential during early CNC development for these cells to generate ectomesenchyme and head pigment precursors. In a forward genetic screen in zebrafish, we identified a dominant D123N mutation in h3f3a, one of five zebrafish variant histone H3.3 genes, that eliminates the CNC–derived head skeleton and a subset of pigment cells yet leaves other CNC derivatives and trunk NC intact. Analyses of nucleosome assembly indicate that mutant D123N H3.3 interferes with H3.3 nucleosomal incorporation by forming aberrant H3 homodimers. Consistent with CNC defects arising from insufficient H3.3 incorporation into chromatin, supplying exogenous wild-type H3.3 rescues head skeletal development in mutants. Surprisingly, embryo-wide expression of dominant mutant H3.3 had little effect on embryonic development outside CNC, indicating an unexpectedly specific sensitivity of CNC to defects in H3.3 incorporation. Whereas previous studies had implicated H3.3 in large-scale histone replacement events that generate totipotency during germ line development, our work has revealed an additional role of H3.3 in the broad potential of the ectoderm-derived CNC, including the ability to make the mesoderm-like ectomesenchymal precursors of the head skeleton.