Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Gerry Kenna is active.

Publication


Featured researches published by J. Gerry Kenna.


Nature Reviews Drug Discovery | 2011

Managing the challenge of chemically reactive metabolites in drug development

B. Kevin Park; Alan R. Boobis; Stephen E. Clarke; Christopher E. Goldring; David Jones; J. Gerry Kenna; Craig Lambert; Hugh Gerard Laverty; Dean J. Naisbitt; Sidney D. Nelson; Deborah A. Nicoll-Griffith; R. Scott Obach; Philip Routledge; Dennis A. Smith; Donald J. Tweedie; Nico P. E. Vermeulen; Dominic P. Williams; Ian D. Wilson; Thomas A. Baillie

The normal metabolism of drugs can generate metabolites that have intrinsic chemical reactivity towards cellular molecules, and therefore have the potential to alter biological function and initiate serious adverse drug reactions. Here, we present an assessment of the current approaches used for the evaluation of chemically reactive metabolites. We also describe how these approaches are being used within the pharmaceutical industry to assess and minimize the potential of drug candidates to cause toxicity. At early stages of drug discovery, iteration between medicinal chemistry and drug metabolism can eliminate perceived reactive metabolite-mediated chemical liabilities without compromising pharmacological activity or the need for extensive safety evaluation beyond standard practices. In the future, reactive metabolite evaluation may also be useful during clinical development for improving clinical risk assessment and risk management. Currently, there remains a huge gap in our understanding of the basic mechanisms that underlie chemical stress-mediated adverse reactions in humans. This Review summarizes our views on this complex topic, and includes insights into practices considered by the pharmaceutical industry.


Chemical Research in Toxicology | 2012

In vitro approach to assess the potential for risk of idiosyncratic adverse reactions caused by candidate drugs.

Richard A. Thompson; Emre M. Isin; Yan Li; Lars Weidolf; Ken Page; Ian D. Wilson; Steve Swallow; Brian Middleton; Simone Stahl; Alison J. Foster; Hugues Dolgos; Richard Weaver; J. Gerry Kenna

Idiosyncratic adverse drug reactions (IADRs) in humans can result in a broad range of clinically significant toxicities leading to attrition during drug development as well as postlicensing withdrawal or labeling. IADRs arise from both drug and patient related mechanisms and risk factors. Drug related risk factors, resulting from parent compound or metabolites, may involve multiple contributory mechanisms including organelle toxicity, effects related to compound disposition, and/or immune activation. In the current study, we evaluate an in vitro approach, which explored both cellular effects and covalent binding (CVB) to assess IADR risks for drug candidates using 36 drugs which caused different patterns and severities of IADRs in humans. The cellular effects were tested in an in vitro Panel of five assays which quantified (1) toxicity to THLE cells (SV40 T-antigen-immortalized human liver epithelial cells), which do not express P450s, (2) toxicity to a THLE cell line which selectively expresses P450 3A4, (3) cytotoxicity in HepG2 cells in glucose and galactose media, which is indicative of mitochondrial injury, (4) inhibition of the human bile salt export pump, BSEP, and (5) inhibition of the rat multidrug resistance associated protein 2, Mrp2. In addition, the CVB Burden was estimated by determining the CVB of radiolabeled compound to human hepatocytes and factoring in both the maximum prescribed daily dose and the fraction of metabolism leading to CVB. Combining the aggregated results from the in vitro Panel assays with the CVB Burden data discriminated, with high specificity (78%) and sensitivity (100%), between 27 drugs, which had severe or marked IADR concern, and 9 drugs, which had low IADR concern, we propose that this integrated approach has the potential to enable selection of drug candidates with reduced propensity to cause IADRs in humans.


Chemico-Biological Interactions | 2011

Risk assessment and mitigation strategies for reactive metabolites in drug discovery and development.

Richard A. Thompson; Emre M. Isin; Yan Li; Richard Weaver; Lars Weidolf; Ian D. Wilson; Alf Claesson; Ken Page; Hugues Dolgos; J. Gerry Kenna

Drug toxicity is a leading cause of attrition of candidate drugs during drug development as well as of withdrawal of drugs post-licensing due to adverse drug reactions in man. These adverse drug reactions cause a broad range of clinically severe conditions including both highly reproducible and dose dependent toxicities as well as relatively infrequent and idiosyncratic adverse events. The underlying risk factors can be split into two groups: (1) drug-related and (2) patient-related. The drug-related risk factors include metabolic factors that determine the propensity of a molecule to form toxic reactive metabolites (RMs), and the RM and non-RM mediated mechanisms which cause cell and tissue injury. Patient related risk factors may vary markedly between individuals, and encompass genetic and non-genetic processes, e.g. environmental, that influence the disposition of drugs and their metabolites, the nature of the adverse responses elicited and the resulting biological consequences. We describe a new strategy, which builds upon the strategies used currently within numerous pharmaceutical companies to avoid and minimize RM formation during drug discovery, and that is intended to reduce the likelihood that candidate drugs will cause toxicity in the human population. The new strategy addresses drug-related safety hazards, but not patient-related risk factors. A common target organ of toxicity is the liver and to decrease the likelihood that candidate drugs will cause liver toxicity (both non-idiosyncratic and idiosyncratic), we propose use of an in vitro Hepatic Liability Panel alongside in vitro methods for the detection of RMs. This will enable design and selection of compounds in discovery that have reduced propensity to cause liver toxicity. In vitro Hepatic Liability is assessed using toxicity assays that quantify: CYP 450 dependent and CYP 450 independent cell toxicity; mitochondrial impairment; and inhibition of the Bile Salt Export Pump. Prior to progression into development, a Hepatotoxicity Hazard Matrix combines data from the Hepatic Liability Panel with the Estimated RM Body Burden. The latter is defined as the level of covalent binding of radiolabelled drug to human hepatocyte proteins in vitro adjusted for the predicted human dose. We exemplify the potential value of this approach by consideration of the thiazolidinedione class of drugs.


Toxicology | 2010

Cell based approaches for evaluation of drug-induced liver injury.

Mhairi L. Greer; Jane Barber; Julie Eakins; J. Gerry Kenna

An improved understanding of mechanisms that underlie drug-induced liver injury (DILI) is required to enable design of drugs that have minimal potential to cause this adverse reaction in man. Available evidence suggests DILI arises in susceptible patients because of an imbalance between chemical insults (which are an inherent property of certain drugs and/or their metabolites) and the ability of the liver to mount compensatory/adaptive responses. In vivo safety testing in pre-clinical species ensures that drugs which enter clinical trials do not cause reproducible and dose-dependent liver injury in man, but is of limited value for exploration of underlying mechanisms and does not assess potential to cause rare idiosyncratic DILI. This review highlights the value that can be gained from in vitro studies using cultured hepatocytes and also hepatocyte-derived cell lines transfected with individual human cytochrome P450 (CYP450) isoforms. We have evaluated a range of mechanisms and endpoints (cell necrosis, mitochondrial injury, inhibition of biliary transporters and metabolite-mediated toxicity) using these model systems. Our data indicate that multiple mechanisms are likely to be involved in development of idiosyncratic DILI in man caused by numerous drugs, e.g. the anticonvulsant chlorpromazine.


Toxicological Sciences | 2014

A Correlation Between the In Vitro Drug Toxicity of Drugs to Cell Lines That Express Human P450s and Their Propensity to Cause Liver Injury in Humans

Frida Gustafsson; Alison J. Foster; Sunil Sarda; Matthew Bridgland-Taylor; J. Gerry Kenna

Drug toxicity to T-antigen-immortalized human liver epithelial (THLE) cells stably transfected with plasmid vectors that encoded human cytochrome P450s 1A2, 2C9, 2C19, 2D6, or 3A4, or an empty plasmid vector (THLE-Null), was investigated. An automated screening platform, which included 1% dimethyl sulfoxide (DMSO) vehicle, 2.7% bovine serum in the culture medium, and assessed 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium reduction, was used to evaluate the cytotoxicity of 103 drugs after 24h. Twenty-two drugs caused cytotoxicity to THLE-Null cells, with EC₅₀ ≤ 200 μM; 21 of these drugs (95%) have been reported to cause human liver injury. Eleven drugs exhibited lower EC₅₀ values in cells transfected with CYP3A4 (THLE-3A4 cells) than in THLE-Null cells; 10 of these drugs (91%) caused human liver injury. An additional 8 drugs, all of which caused human liver injury, exhibited potentiated THLE-3A4 cell toxicity when evaluated using a manual protocol that included 0.2% or 1% DMSO, but not bovine serum. Fourteen of the drugs that exhibited potentiated THLE-3A4 cell toxicity are known to be metabolized by P450s to reactive intermediates. These drugs included troglitazone, which was shown to undergo metabolic bioactivation and covalent binding to proteins in THLE-3A4 cells. A single drug (rimonabant) exhibited marked THLE cell toxicity but did not cause human liver injury; this drug had very low reported plasma exposure. These results indicate that evaluation of toxicity to THLE-Null and THLE-3A4 cell lines during drug discovery may aid selection of drugs with reduced propensity to cause drug-induced liver injury and that consideration of human exposure is required to enhance data interpretation.


Toxicology in Vitro | 2014

Evaluation of the use of imaging parameters for the detection of compound-induced hepatotoxicity in 384-well cultures of HepG2 cells and cryopreserved primary human hepatocytes.

Helen Garside; Karen Marcoe; Jessica Chesnut-Speelman; Alison J. Foster; Daniel Muthas; J. Gerry Kenna; Usha Warrior; Joanne Bowes; James Baumgartner

Drug-induced liver injury (DILI) is a major cause of failed drug development, withdrawal and restricted usage. Therefore screening assays which aid selection of candidate drugs with reduced propensity to cause DILI are required. We have investigated the toxicity of 144 drugs, 108 of which caused DILI, using assays identified in the literature as having some predictivity for hepatotoxicity. The validated assays utilised either HepG2 cells, HepG2 cells in the presence of rat S9 fraction or isolated human hepatocytes. All parameters were quantified by multiplexed and automated high content fluorescence microscopy, at appropriate time points after compound administration (4, 24 or 48h). The individual endpoint which identified drugs that caused DILI with greatest precision was maximal fold induction in CM-H2DFFDA staining in hepatocytes after 24h (41% sensitivity, 86% specificity). However, hierarchical clustering analysis of all endpoints provided the most sensitive identification of drugs which caused DILI (58% sensitivity, 75% specificity). We conclude that multi-parametric high content cell toxicity assays can enable in vitro detection of drugs that have high propensity to cause DILI in vivo but that many DILI compounds exhibit few in vitro signals when evaluated using these assays.


Archives of Toxicology | 2012

Systems biology tools for toxicology

Suzanne Geenen; Peter Neal Taylor; Jacky L. Snoep; Ian D. Wilson; J. Gerry Kenna; Hans V. Westerhoff

An important goal of toxicology is to understand and predict the adverse effects of drugs and other xenobiotics. For pharmaceuticals, such effects often emerge unexpectedly in man even when absent from trials in vitro and in animals. Although drugs and xenobiotics act on molecules, it is their perturbation of intracellular networks that matters. The tremendous complexity of these networks makes it difficult to understand the effects of xenobiotics on their ability to function. Because systems biology integrates data concerning molecules and their interactions into an understanding of network behaviour, it should be able to assist toxicology in this respect. This review identifies how in silico systems biology tools, such as kinetic modelling, and metabolic control, robustness and flux analyse, may indeed help understanding network-mediated toxicity. It also shows how these approaches function by implementing them vis-à-vis the glutathione network, which is important for the detoxification of reactive drug metabolites. The tools enable the appreciation of the steady state concept for the detoxification network and make it possible to simulate and then understand effects of perturbations of the macromolecules in the pathway that are counterintuitive. We review how a glutathione model has been used to explain the impact of perturbation of the pathway at various molecular sites, as would be the effect of single-nucleotide polymorphisms. We focus on how the mutations impact the levels of glutathione and of two candidate biomarkers of hepatic glutathione status. We conclude this review by sketching how the various systems biology tools may help in the various phases of drug development in the pharmaceutical industry.


Journal of Pharmaceutical and Biomedical Analysis | 2011

HPLC-MS/MS methods for the quantitative analysis of 5-oxoproline (pyroglutamate) in rat plasma and hepatic cell line culture medium.

Suzanne Geenen; Cristina Guallar-Hoyas; Filippos Michopoulos; J. Gerry Kenna; Kyle L. Kolaja; Hans V. Westerhoff; Paul S. Thomas; Ian D. Wilson

5-Oxoproline (5-OP; pyroglutamate) is an intermediate in the biosynthesis of the endogenous tripeptide glutathione and has been seen to be elevated in the biofluids and tissues of rats following the administration of glutathione-depleting hepatotoxic xenobiotics such as acetaminophen (paracetamol), bromobenzene and ethionine. As 5-OP is a potential biomarker for hepatotoxicity HPLC-MS/MS methods have been developed for its quantification in in vitro cell culture media and rat plasma. For the cell culture media the lower limit of quantification (LLOQ), defined as the lowest concentration on the calibration curve, was 10 ng/ml. Minimal carry over was observed for cell culture media between injections (less than 5% at all concentrations examined), precision and accuracy were generally better than 20% for within and between day analyses. For rat plasma a LLOQ of 50 ng/ml was obtained. Carry over for plasma was less than 5% for all concentrations, within and between batch accuracy and precision were generally better than 20%. The methods were linear for both sample types from the LLOQ up to 1 μg/ml. For samples obtained from rats subjected to chronic administration of the hepatotoxin methapyrilene, concentrations of 5-OP were not observed to increase significantly at any time point compared to controls. 5-OP was also determined in the culture media of human liver epithelial (THLE) cells transfected with cytochrome P450 2E1 (THLE-2E1). Following exposure of THLE-2E1 cells to acetaminophen, large increases in the concentrations of 5-OP were observed, which correlated with reduced cellular glutathione content and with cell toxicity. These results show that LC-MS/MS can be used to perform rapid, sensitive, and quantitative determination of 5-OP in vivo and in vitro and will enable additional investigations into the utility of 5-OP as a biomarker of liver drug-induced liver injury.


Integrative Biology | 2013

Multiscale modelling approach combining a kinetic model of glutathione metabolism with PBPK models of paracetamol and the potential glutathione-depletion biomarkers ophthalmic acid and 5-oxoproline in humans and rats

Suzanne Geenen; James W.T. Yates; J. Gerry Kenna; Frédéric Y. Bois; Ian D. Wilson; Hans V. Westerhoff

A key role of the antioxidant glutathione is detoxification of chemically reactive electrophilic drug metabolites within the liver. Therefore glutathione depletion can have severe toxic consequences. Ophthalmic acid and 5-oxoproline are metabolites involved in glutathione metabolism, which can be measured readily in the blood and urine and have been proposed as candidate biomarkers of hepatic glutathione content. However, currently it is unclear whether their concentrations in plasma exhibit a robust correlation with hepatic glutathione content. To explore this important question, we have developed a novel approach which combines a physiologically based pharmacokinetic (PBPK) model of metabolism and disposition of paracetamol (acetaminophen) with a previously developed mathematical systems model of hepatic glutathione homeostasis. Paracetamol is metabolised to reactive intermediates which deplete glutathione and cause toxicity when given at high doses. Our model correctly predicted that hepatic glutathione depletion following paracetamol administration resulted in elevated concentrations of 5-oxoproline and ophthalmic acid in blood and of 5-oxoproline in urine. However, we also found from the model that concentrations of both of the compounds were likely to be influenced by prolonged administration of paracetamol and by the concentrations of intracellular metabolites such as methionine. We conclude that care must be taken when extrapolating from concentrations of these biomarkers to hepatic glutathione status.


Xenobiotica | 2012

Evaluation of the pharmacokinetics, biotransformation and hepatic transporter effects of troglitazone in mice with humanized livers.

Timothy Schulz-Utermoehl; Sunil Sarda; John R. Foster; Matt Jacobsen; J. Gerry Kenna; Yoshio Morikawa; Juuso Salmu; Gerhard Gross; Ian D. Wilson

The pharmacokinetics, biotransformation and hepatic transporter effects of troglitazone were investigated following daily oral dosing, at 300 and 600 mg/kg, for 7 days to control (SCID) and chimeric (PXB) mice with humanized livers. Clinical chemistry revealed no consistent pattern of changes associated with troglitazone treatment in the PXB mouse. Human MRP2 but not mouse mrp2 was down-regulated following troglitazone treatment. Pharmacokinetic analysis revealed similar Tmax values for troglitazone in both mouse groups, a mono- and bi-phasic elimination phase in PXB and SCID mice, respectively, but a 3- to 5- and 2- to 5-fold higher Cmax and AUC, respectively, in PXB mice. Oxidative and conjugative metabolic pathways were identified, with the sulfate being the predominant metabolite in PXB compared to SCID mice (4- to 13-fold increase in liver and blood, respectively). The glucuronide conjugate was predominant in SCID mice. There was no evidence of glutathione conjugation. The primary oxidative pathways were mono- and di-oxidations which may also be attributed to quinone or hydroquinone derivatives. Several metabolites were observed in PXB mice only. As the troglitazone metabolic profiles in the PXB mouse were similar to reported human data the PXB mouse model can provide a useful first insight into circulating human metabolites of xenobiotics metabolized in the liver.

Collaboration


Dive into the J. Gerry Kenna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suzanne Geenen

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sophie Regan

University of Liverpool

View shared research outputs
Researchain Logo
Decentralizing Knowledge