Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Gordon Burleigh is active.

Publication


Featured researches published by J. Gordon Burleigh.


Frontiers in Plant Science | 2014

Duplications and losses in gene families of rust pathogens highlight putative effectors.

Amanda Pendleton; Katherine E. Smith; Nicolas Feau; Francis L. Martin; Igor V. Grigoriev; Richard C. Hamelin; C. Dana Nelson; J. Gordon Burleigh; John M. Davis

Rust fungi are a group of fungal pathogens that cause some of the worlds most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the hosts cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Phylotranscriptomic analysis of the origin and early diversification of land plants

Norman J. Wickett; Siavash Mirarab; Nam Phuong Nguyen; Tandy J. Warnow; Eric J. Carpenter; Naim Matasci; Saravanaraj Ayyampalayam; Michael S. Barker; J. Gordon Burleigh; Matthew A. Gitzendanner; Brad R. Ruhfel; Eric Wafula; Joshua P. Der; Sean W. Graham; Sarah Mathews; Michael Melkonian; Douglas E. Soltis; Pamela S. Soltis; Nicholas W. Miles; Carl J. Rothfels; Lisa Pokorny; A. Jonathan Shaw; Lisa De Gironimo; Dennis W. Stevenson; Barbara Surek; Juan Carlos Villarreal; Béatrice Roure; Hervé Philippe; Claude W. de Pamphilis; Tao Chen

Significance Early branching events in the diversification of land plants and closely related algal lineages remain fundamental and unresolved questions in plant evolutionary biology. Accurate reconstructions of these relationships are critical for testing hypotheses of character evolution: for example, the origins of the embryo, vascular tissue, seeds, and flowers. We investigated relationships among streptophyte algae and land plants using the largest set of nuclear genes that has been applied to this problem to date. Hypothesized relationships were rigorously tested through a series of analyses to assess systematic errors in phylogenetic inference caused by sampling artifacts and model misspecification. Results support some generally accepted phylogenetic hypotheses, while rejecting others. This work provides a new framework for studies of land plant evolution. Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances in molecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the data matrix or to phylogenetic method, including supermatrix, supertree, and coalescent-based approaches, maximum-likelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots

Michael J. Moore; Pamela S. Soltis; Charles D. Bell; J. Gordon Burleigh; Douglas E. Soltis

Although Pentapetalae (comprising all core eudicots except Gunnerales) include ≈70% of all angiosperms, the origin of and relationships among the major lineages of this clade have remained largely unresolved. Phylogenetic analyses of 83 protein-coding and rRNA genes from the plastid genome for 86 species of seed plants, including new sequences from 25 eudicots, indicate that soon after its origin, Pentapetalae diverged into three clades: (i) a “superrosid” clade consisting of Rosidae, Vitaceae, and Saxifragales; (ii) a “superasterid” clade consisting of Berberidopsidales, Santalales, Caryophyllales, and Asteridae; and (iii) Dilleniaceae. Maximum-likelihood analyses support the position of Dilleniaceae as sister to superrosids, but topology tests did not reject alternative positions of Dilleniaceae as sister to Asteridae or all remaining Pentapetalae. Molecular dating analyses suggest that the major lineages within both superrosids and superasterids arose in as little as 5 million years. This phylogenetic hypothesis provides a crucial historical framework for future studies aimed at elucidating the underlying causes of the morphological and species diversity in Pentapetalae.


BMC Evolutionary Biology | 2014

From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes

Brad R. Ruhfel; Matthew A. Gitzendanner; Pamela S. Soltis; Douglas E. Soltis; J. Gordon Burleigh

BackgroundNext-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data.ResultsWe assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa.ConclusionsAnalyses of the plastid sequence data recovered a strongly supported framework of relationships for green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii) a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade (Monilophyta), Equisetales + Psilotales are sister to Marattiales + leptosporangiate ferns. Our analyses also highlight the challenges of using plastid genome sequences in deep-level phylogenomic analyses, and we provide suggestions for future analyses that will likely incorporate plastid genome sequence data for thousands of species. We particularly emphasize the importance of exploring the effects of different partitioning and character coding strategies.


PLOS Biology | 2015

Finding Our Way through Phenotypes

Andrew R. Deans; Suzanna E. Lewis; Eva Huala; Salvatore S. Anzaldo; Michael Ashburner; James P. Balhoff; David C. Blackburn; Judith A. Blake; J. Gordon Burleigh; Bruno Chanet; Laurel Cooper; Mélanie Courtot; Sándor Csösz; Hong Cui; Wasila M. Dahdul; Sandip Das; T. Alexander Dececchi; Agnes Dettai; Rui Diogo; Robert E. Druzinsky; Michel Dumontier; Nico M. Franz; Frank Friedrich; George V. Gkoutos; Melissa Haendel; Luke J. Harmon; Terry F. Hayamizu; Yongqun He; Heather M. Hines; Nizar Ibrahim

Imagine if we could compute across phenotype data as easily as genomic data; this article calls for efforts to realize this vision and discusses the potential benefits.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Synthesis of phylogeny and taxonomy into a comprehensive tree of life

Cody E. Hinchliff; Stephen A. Smith; James F. Allman; J. Gordon Burleigh; Ruchi Chaudhary; Lyndon M. Coghill; Keith A. Crandall; Jiabin Deng; Bryan T. Drew; Romina Gazis; Karl Gude; David S. Hibbett; Laura A. Katz; H. Dail Laughinghouse; Emily Jane McTavish; Peter E. Midford; Christopher L. Owen; Richard H. Ree; Jonathan Rees; Douglas E. Soltis; Tiffani L. Williams; Karen Cranston

Significance Scientists have used gene sequences and morphological data to construct tens of thousands of evolutionary trees that describe the evolutionary history of animals, plants, and microbes. This study is the first, to our knowledge, to apply an efficient and automated process for assembling published trees into a complete tree of life. This tree and the underlying data are available to browse and download from the Internet, facilitating subsequent analyses that require evolutionary trees. The tree can be easily updated with newly published data. Our analysis of coverage not only reveals gaps in sampling and naming biodiversity but also further demonstrates that most published phylogenies are not available in digital formats that can be summarized into a tree of life. Reconstructing the phylogenetic relationships that unite all lineages (the tree of life) is a grand challenge. The paucity of homologous character data across disparately related lineages currently renders direct phylogenetic inference untenable. To reconstruct a comprehensive tree of life, we therefore synthesized published phylogenies, together with taxonomic classifications for taxa never incorporated into a phylogeny. We present a draft tree containing 2.3 million tips—the Open Tree of Life. Realization of this tree required the assembly of two additional community resources: (i) a comprehensive global reference taxonomy and (ii) a database of published phylogenetic trees mapped to this taxonomy. Our open source framework facilitates community comment and contribution, enabling the tree to be continuously updated when new phylogenetic and taxonomic data become digitally available. Although data coverage and phylogenetic conflict across the Open Tree of Life illuminate gaps in both the underlying data available for phylogenetic reconstruction and the publication of trees as digital objects, the tree provides a compelling starting point for community contribution. This comprehensive tree will fuel fundamental research on the nature of biological diversity, ultimately providing up-to-date phylogenies for downstream applications in comparative biology, ecology, conservation biology, climate change, agriculture, and genomics.


Bioinformatics | 2008

DupTree: a program for large-scale phylogenetic analyses using gene tree parsimony

André Wehe; Mukul S. Bansal; J. Gordon Burleigh; Oliver Eulenstein

UNLABELLED DupTree is a new software program for inferring rooted species trees from collections of gene trees using the gene tree parsimony approach. The program implements a novel algorithm that significantly improves upon the run time of standard search heuristics for gene tree parsimony, and enables the first truly genome-scale phylogenetic analyses. In addition, DupTree allows users to examine alternate rootings and to weight the reconciliation costs for gene trees. DupTree is an open source project written in C++. AVAILABILITY DupTree for Mac OS X, Windows, and Linux along with a sample dataset and an on-line manual are available at http://genome.cs.iastate.edu/CBL/DupTree


Systematic Biology | 2011

Genome-Scale Phylogenetics: Inferring the Plant Tree of Life from 18,896 Gene Trees

J. Gordon Burleigh; Mukul S. Bansal; Oliver Eulenstein; Stefanie Hartmann; André Wehe

Phylogenetic analyses using genome-scale data sets must confront incongruence among gene trees, which in plants is exacerbated by frequent gene duplications and losses. Gene tree parsimony (GTP) is a phylogenetic optimization criterion in which a species tree that minimizes the number of gene duplications induced among a set of gene trees is selected. The run time performance of previous implementations has limited its use on large-scale data sets. We used new software that incorporates recent algorithmic advances to examine the performance of GTP on a plant data set consisting of 18,896 gene trees containing 510,922 protein sequences from 136 plant taxa (giving a combined alignment length of >2.9 million characters). The relationships inferred from the GTP analysis were largely consistent with previous large-scale studies of backbone plant phylogeny and resolved some controversial nodes. The placement of taxa that were present in few gene trees generally varied the most among GTP bootstrap replicates. Excluding these taxa either before or after the GTP analysis revealed high levels of phylogenetic support across plants. The analyses supported magnoliids sister to a eudicot + monocot clade and did not support the eurosid I and II clades. This study presents a nuclear genomic perspective on the broad-scale phylogenic relationships among plants, and it demonstrates that nuclear genes with a history of duplication and loss can be phylogenetically informative for resolving the plant tree of life.


Algorithms for Molecular Biology | 2010

Robinson-Foulds Supertrees

Mukul S. Bansal; J. Gordon Burleigh; Oliver Eulenstein; David Fernández-Baca

BackgroundSupertree methods synthesize collections of small phylogenetic trees with incomplete taxon overlap into comprehensive trees, or supertrees, that include all taxa found in the input trees. Supertree methods based on the well established Robinson-Foulds (RF) distance have the potential to build supertrees that retain much information from the input trees. Specifically, the RF supertree problem seeks a binary supertree that minimizes the sum of the RF distances from the supertree to the input trees. Thus, an RF supertree is a supertree that is consistent with the largest number of clusters (or clades) from the input trees.ResultsWe introduce efficient, local search based, hill-climbing heuristics for the intrinsically hard RF supertree problem on rooted trees. These heuristics use novel non-trivial algorithms for the SPR and TBR local search problems which improve on the time complexity of the best known (naïve) solutions by a factor of Θ(n) and Θ(n2) respectively (where n is the number of taxa, or leaves, in the supertree). We use an implementation of our new algorithms to examine the performance of the RF supertree method and compare it to matrix representation with parsimony (MRP) and the triplet supertree method using four supertree data sets. Not only did our RF heuristic provide fast estimates of RF supertrees in all data sets, but the RF supertrees also retained more of the information from the input trees (based on the RF distance) than the other supertree methods.ConclusionsOur heuristics for the RF supertree problem, based on our new local search algorithms, make it possible for the first time to estimate large supertrees by directly optimizing the RF distance from rooted input trees to the supertrees. This provides a new and fast method to build accurate supertrees. RF supertrees may also be useful for estimating majority-rule(-) supertrees, which are a generalization of majority-rule consensus trees.


Systematic Biology | 2004

Performance of Flip Supertree Construction with a Heuristic Algorithm

Oliver Eulenstein; Duhong Chen; J. Gordon Burleigh; David Fernández-Baca; Michael J. Sanderson

Supertree methods are used to assemble separate phylogenetic trees with shared taxa into larger trees (supertrees) in an effort to construct more comprehensive phylogenetic hypotheses. In spite of much recent interest in supertrees, there are still few methods for supertree construction. The flip supertree problem is an error correction approach that seeks to find a minimum number of changes (flips) to the matrix representation of the set of input trees to resolve their incompatibilities. A previous flip supertree algorithm was limited to finding exact solutions and was only feasible for small input trees. We developed a heuristic algorithm for the flip supertree problem suitable for much larger input trees. We used a series of 48- and 96-taxon simulations to compare supertrees constructed with the flip supertree heuristic algorithm with supertrees constructed using other approaches, including MinCut (MC), modified MC (MMC), and matrix representation with parsimony (MRP). Flip supertrees are generally far more accurate than supertrees constructed using MC or MMC algorithms and are at least as accurate as supertrees built with MRP. The flip supertree method is therefore a viable alternative to other supertree methods when the number of taxa is large.

Collaboration


Dive into the J. Gordon Burleigh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pamela S. Soltis

Florida Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mukul S. Bansal

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Cui

University of Arizona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge