Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Grube is active.

Publication


Featured researches published by J. Grube.


Science | 2011

Detection of Pulsed Gamma Rays Above 100 GeV from the Crab Pulsar

E. Aliu; T. Arlen; T. Aune; M. Beilicke; W. Benbow; A. Bouvier; S. M. Bradbury; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; J. L. Christiansen; L. Ciupik; E. Collins-Hughes; M. P. Connolly; W. Cui; R. Dickherber; C. Duke; M. Errando; A. Falcone; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante; D. Gall; K. Gibbs; G. H. Gillanders; S. Godambe

This detection constrains the mechanism and emission region of gamma-ray radiation in the pulsar’s magnetosphere. We report the detection of pulsed gamma rays from the Crab pulsar at energies above 100 giga–electron volts (GeV) with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) array of atmospheric Cherenkov telescopes. The detection cannot be explained on the basis of current pulsar models. The photon spectrum of pulsed emission between 100 mega–electron volts and 400 GeV is described by a broken power law that is statistically preferred over a power law with an exponential cutoff. It is unlikely that the observation can be explained by invoking curvature radiation as the origin of the observed gamma rays above 100 GeV. Our findings require that these gamma rays be produced more than 10 stellar radii from the neutron star.


The Astrophysical Journal | 2011

Discovery of TeV Gamma-ray Emission from Tycho's Supernova Remnant

V. A. Acciari; E. Aliu; T. Arlen; T. Aune; M. Beilicke; W. Benbow; S. M. Bradbury; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; L. Ciupik; E. Collins-Hughes; W. Cui; R. Dickherber; C. Duke; M. Errando; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante; D. Gall; G. H. Gillanders; S. Godambe; S. Griffin; J. Grube; R. Guenette; G. Gyuk

We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tychos SNR. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak emission coming from the direction of the remnant, compatible with a point source located at 00h25m270, + 64°1050 (J2000). The TeV photon spectrum measured by VERITAS can be described with a power law dN/dE = C(E/3.42 TeV)–Γ with Γ = 1.95 ± 0.51stat ± 0.30sys and C = (1.55 ± 0.43stat ± 0.47sys) × 10–14xa0cm–2xa0s–1xa0TeV–1. The integral flux above 1xa0TeV corresponds to ~0.9% of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models that can describe the data. The lowest magnetic field allowed in these models is ~80 μG, which may be interpreted as evidence for magnetic field amplification.


The Astrophysical Journal | 2012

CONSTRAINTS ON COSMIC RAYS, MAGNETIC FIELDS, AND DARK MATTER FROM GAMMA-RAY OBSERVATIONS OF THE COMA CLUSTER OF GALAXIES WITH VERITAS AND FERMI

T. Arlen; T. Aune; M. Beilicke; W. Benbow; A. Bouvier; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; L. Ciupik; E. Collins-Hughes; M. P. Connolly; W. Cui; R. Dickherber; J. Dumm; A. Falcone; S. Federici; Q. Feng; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante; D. Gall; S. Godambe; S. Griffin; J. Grube; G. Gyuk; J. Holder

Observations of radio halos and relics in galaxy clusters indicate efficient electron acceleration. Protons should likewise be accelerated and, on account of weak energy losses, can accumulate, suggesting that clusters may also be sources of very high energy (VHE; E > 100 GeV) gamma-ray emission. We report here on VHE gamma-ray observations of the Coma galaxy cluster with the VERITAS array of imaging Cerenkov telescopes, with complementing Fermi Large Area Telescope observations at GeV energies. No significant gamma-ray emission from the Coma Cluster was detected. Integral flux upper limits at the 99% confidence level were measured to be on the order of (2-5) × 10–8 photons m –2 s –1 (VERITAS, >220 GeV) and ~2 × 10–6 photons m –2 s –1 (Fermi, 1-3 GeV), respectively. We use the gamma-ray upper limits to constrain cosmic rays (CRs) and magnetic fields in Coma. Using an analytical approach, the CR-to-thermal pressure ratio is constrained to be <16% from VERITAS data and <1.7% from Fermi data (averaged within the virial radius). These upper limits are starting to constrain the CR physics in self-consistent cosmological cluster simulations and cap the maximum CR acceleration efficiency at structure formation shocks to be <50%. Alternatively, this may argue for non-negligible CR transport processes such as CR streaming and diffusion into the outer cluster regions. Assuming that the radio-emitting electrons of the Coma halo result from hadronic CR interactions, the observations imply a lower limit on the central magnetic field in Coma of ~(2-5.5) μG, depending on the radial magnetic field profile and on the gamma-ray spectral index. Since these values are below those inferred by Faraday rotation measurements in Coma (for most of the parameter space), this renders the hadronic model a very plausible explanation of the Coma radio halo. Finally, since galaxy clusters are dark matter (DM) dominated, the VERITAS upper limits have been used to place constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the DM particles, σv.


Physical Review D | 2012

VERITAS deep observations of the dwarf spheroidal galaxy Segue 1

E. Aliu; S. Archambault; T. Arlen; T. Aune; M. Beilicke; W. Benbow; A. Bouvier; S. M. Bradbury; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; J. L. Christiansen; L. Ciupik; E. Collins-Hughes; M. P. Connolly; W. Cui; G. Decerprit; R. Dickherber; J. Dumm; M. Errando; A. Falcone; Q. Feng; Francesc Ferrer; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante

The VERITAS array of Cherenkov telescopes has carried out a deep observational program on the nearby dwarf spheroidal galaxy Segue 1. We report on the results of nearly 48 hours of good quality selected data, taken between January 2010 and May 2011. No significant γ-ray emission is detected at the nominal position of Segue 1, and upper limits on the integrated flux are derived. According to recent studies, Segue 1 is the most dark matter-dominated dwarf spheroidal galaxy currently known. We derive stringent bounds on various annihilating and decaying dark matter particle models. The upper limits on the velocity-weighted annihilation cross-section are ⟨σv⟩95% CL≲10−23 cm3 s−1, improving our limits from previous observations of dwarf spheroidal galaxies by at least a factor of 2 for dark matter particle masses mχ≳300 GeV. The lower limits on the decay lifetime are at the level of τ95% CL≳1024 s. Finally, we address the interpretation of the cosmic ray lepton anomalies measured by ATIC and PAMELA in terms of dark matter annihilation, and show that the VERITAS observations of Segue 1 disfavor such a scenario.


The Astrophysical Journal | 2010

Veritas search for VHE gamma-ray emission from dwarf spheroidal galaxies

V. A. Acciari; T. Arlen; T. Aune; M. Beilicke; W. Benbow; D. Boltuch; S. M. Bradbury; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; J. L. Christiansen; L. Ciupik; W. Cui; R. Dickherber; C. Duke; J. P. Finley; G. Finnegan; A. Furniss; N. Galante; S. Godambe; J. Grube; R. Guenette; G. Gyuk; D. Hanna; J. Holder; C. M. Hui; T. B. Humensky; A. Imran

Indirect dark matter searches with ground-based gamma-ray observatories provide an alternative for identifying the particle nature of dark matter that is complementary to that of direct search or accelerator production experiments. We present the results of observations of the dwarf spheroidal galaxies Draco, Ursa Minor, Bo¨ 1, and Willman 1 conducted by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). These galaxies are nearby dark matter dominated objects located at a typical distance of several tens of kiloparsecs for which there are good measurements of the dark matter density profile from stellar velocity measurements. Since the conventional astrophysical background of very high energy gamma rays from these objects appears to be negligible, they are good targets to search for the secondary gamma-ray photons produced by interacting or decaying dark matter particles. No significant gamma-ray flux above 200 GeV was detected from these four dwarf galaxies for a typical exposure of ∼20 hr. The 95% confidence upper limits on the integral gamma-ray flux are in the range (0.4–2.2) × 10 −12 photons cm −2 s −1 . We interpret this limiting flux in the context of pair annihilation of weakly interacting massive particles (WIMPs) and derive constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the WIMPs (� σv � 10 −23 cm 3 s −1 for mχ 300 GeVc −2 ). This limit is obtained under conservative assumptions regarding the dark matter distribution in dwarf galaxies and is approximately 3 orders of magnitude above the generic theoretical prediction for WIMPs in the minimal supersymmetric standard model framework. However, significant uncertainty exists in the dark matter distribution as well as the neutralino cross sections which under favorable assumptions could further lower this limit.


The Astrophysical Journal | 2013

Rapid TeV Gamma-Ray Flaring of BL Lacertae

T. Arlen; T. Aune; M. Beilicke; W. Benbow; A. Bouvier; J. H. Buckley; V. Bugaev; A. Cesarini; L. Ciupik; M. P. Connolly; W. Cui; R. Dickherber; J. Dumm; M. Errando; A. Falcone; S. Federici; Q. Feng; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante; D. Gall; S. Griffin; J. Grube; G. Gyuk; D. Hanna; J. Holder; T. B. Humensky; P. Kaaret

We report on the detection of a very rapid TeV gamma-ray flare from BL Lacertae on 2011 June 28 with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The flaring activity was observed during a 34.6 minute exposure, when the integral flux above 200 GeV reached (3.4 ± 0.6) × 10–6 photons m–2 s–1, roughly 125% of the Crab Nebula flux measured by VERITAS. The light curve indicates that the observations missed the rising phase of the flare but covered a significant portion of the decaying phase. The exponential decay time was determined to be 13 ± 4 minutes, making it one of the most rapid gamma-ray flares seen from a TeV blazar. The gamma-ray spectrum of BL Lacertae during the flare was soft, with a photon index of 3.6 ± 0.4, which is in agreement with the measurement made previously by MAGIC in a lower flaring state. Contemporaneous radio observations of the source with the Very Long Baseline Array revealed the emergence of a new, superluminal component from the core around the time of the TeV gamma-ray flare, accompanied by changes in the optical polarization angle. Changes in flux also appear to have occurred at optical, UV, and GeV gamma-ray wavelengths at the time of the flare, although they are difficult to quantify precisely due to sparse coverage. A strong flare was seen at radio wavelengths roughly four months later, which might be related to the gamma-ray flaring activities. We discuss the implications of these multiwavelength results.


The Astrophysical Journal | 2011

VERITAS OBSERVATIONS OF THE TeV BINARY LS I +61° 303 DURING 2008-2010

V. A. Acciari; E. Aliu; T. Arlen; T. Aune; M. Beilicke; W. Benbow; S. M. Bradbury; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; L. Ciupik; E. Collins-Hughes; M. P. Connolly; W. Cui; R. Dickherber; C. Duke; M. Errando; A. Falcone; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante; D. Gall; G. H. Gillanders; S. Godambe; S. Griffin; J. Grube

We present the results of observations of the TeV binary LS I +61{sup 0} 303 with the VERITAS telescope array between 2008 and 2010, at energies above 300 GeV. In the past, both ground-based gamma-ray telescopes VERITAS and MAGIC have reported detections of TeV emission near the apastron phases of the binary orbit. The observations presented here show no strong evidence for TeV emission during these orbital phases; however, during observations taken in late 2010, significant emission was detected from the source close to the phase of superior conjunction (much closer to periastron passage) at a 5.6 standard deviation (5.6{sigma}) post-trials significance. In total, between 2008 October and 2010 December a total exposure of 64.5 hr was accumulated with VERITAS on LS I +61{sup 0} 303, resulting in an excess at the 3.3{sigma} significance level for constant emission over the entire integrated data set. The flux upper limits derived for emission during the previously reliably active TeV phases (i.e., close to apastron) are less than 5% of the Crab Nebula flux in the same energy range. This result stands in apparent contrast to previous observations by both MAGIC and VERITAS which detected the source during these phases at 10% ofmorexa0» the Crab Nebula flux. During the two year span of observations, a large amount of X-ray data were also accrued on LS I +61{sup 0} 303 by the Swift X-ray Telescope and the Rossi X-ray Timing Explorer Proportional Counter Array. We find no evidence for a correlation between emission in the X-ray and TeV regimes during 20 directly overlapping observations. We also comment on data obtained contemporaneously by the Fermi Large Area Telescope.«xa0less


The Astrophysical Journal | 2012

Discovery of High-energy and Very High Energy γ-Ray Emission from the Blazar RBS 0413

E. Aliu; S. Archambault; T. Arlen; T. Aune; M. Beilicke; W. Benbow; M. Böttcher; A. Bouvier; S. M. Bradbury; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; L. Ciupik; E. Collins-Hughes; M. P. Connolly; Paolo S. Coppi; W. Cui; G. Decerprit; R. Dickherber; J. Dumm; M. Errando; A. Falcone; Q. Feng; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante

We report on the discovery of high-energy (HE; E > 0.1 GeV) and very high energy (VHE; E > 100 GeV) γ-ray emission from the high-frequency-peaked BL Lac object RBS 0413. VERITAS, a ground-based γ-ray observatory, detected VHE γ rays from RBS 0413 with a statistical significance of 5.5 standard deviations (σ) and a γ-ray flux of (1.5 ± 0.6stat ± 0.7syst) × 10–8 photons m–2 s–1 (~1% of the Crab Nebula flux) above 250 GeV. The observed spectrum can be described by a power law with a photon index of 3.18 ± 0.68stat ± 0.30syst. Contemporaneous observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope detected HE γ rays from RBS 0413 with a statistical significance of more than 9σ, a power-law photon index of 1.57 ± 0.12stat +0.11 – 0.12sys, and a γ-ray flux between 300 MeV and 300 GeV of (1.64 ± 0.43stat +0.31 – 0.22sys) × 10–5 photons m–2 s–1. We present the results from Fermi-LAT and VERITAS, including a spectral energy distribution modeling of the γ-ray, quasi-simultaneous X-ray (Swift-XRT), ultraviolet (Swift-UVOT), and R-band optical (MDM) data. We find that, if conditions close to equipartition are required, both the combined synchrotron self-Compton/external-Compton and the lepto-hadronic models are preferred over a pure synchrotron self-Compton model.


The Astrophysical Journal | 2011

Veritas observations of gamma-ray bursts detected by swift

V. A. Acciari; E. Aliu; T. Arlen; T. Aune; M. Beilicke; W. Benbow; S. M. Bradbury; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; J. L. Christiansen; L. Ciupik; E. Collins-Hughes; M. P. Connolly; W. Cui; C. Duke; M. Errando; A. Falcone; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante; D. Gall; S. Godambe; S. Griffin; J. Grube; R. Guenette

We present the results of 16 Swift-triggered Gamma-ray burst (GRB) follow-up observations taken with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) telescope array from 2007 January to 2009 June. The median energy threshold and response time of these observations were 260 GeV and 320 s, respectively. Observations had an average duration of 90 minutes. Each burst is analyzed independently in two modes: over the whole duration of the observations and again over a shorter timescale determined by the maximum VERITAS sensitivity to a burst with a t –1.5 time profile. This temporal model is characteristic of GRB afterglows with high-energy, long-lived emission that have been detected by the Large Area Telescope on board the Fermi satellite. No significant very high energy (VHE) gamma-ray emission was detected and upper limits above the VERITAS threshold energy are calculated. The VERITAS upper limits are corrected for gamma-ray extinction by the extragalactic background light and interpreted in the context of the keV emission detected by Swift. For some bursts the VHE emission must have less power than the keV emission, placing constraints on inverse Compton models of VHE emission.


The Astrophysical Journal | 2014

Spatially Resolving the Very High Energy Emission from MGRO J2019+37 with VERITAS

E. Aliu; T. Aune; B. Behera; M. Beilicke; W. Benbow; K. Berger; R. Bird; A. Bouvier; J. H. Buckley; V. Bugaev; M. Cerruti; X. Chen; L. Ciupik; M. P. Connolly; W. Cui; J. Dumm; Vikram V. Dwarkadas; M. Errando; A. Falcone; S. Federici; Q. Feng; J. P. Finley; H. Fleischhack; P. Fortin; L. Fortson; A. Furniss; N. Galante; G. H. Gillanders; E. V. Gotthelf; S. Griffin

We present very high energy (VHE) imaging of MGRO J2019+37 obtained with the VERITAS observatory. The bright extended (~2°) unidentified Milagro source is located toward the rich star formation region Cygnus-X. MGRO J2019+37 is resolved into two VERITAS sources. The faint, point-like source VER J2016+371 overlaps CTB 87, a filled-center remnant (SNR) with no evidence of a supernova remnant shell at the present time. Its spectrum is well fit in the 0.65-10 TeV energy range by a power-law model with photon index 2.3 ± 0.4. VER J2019+378 is a bright extended (~1°) source that likely accounts for the bulk of the Milagro emission and is notably coincident with PSR J2021+3651 and the star formation region Sh 2–104. Its spectrum in the range 1-30 TeV is well fit with a power-law model of photon index 1.75 ± 0.3, among the hardest values measured in the VHE band, comparable to that observed near Vela-X. We explore the unusual spectrum and morphology in the radio and X-ray bands to constrain possible emission mechanisms for this source.

Collaboration


Dive into the J. Grube's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Furniss

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Fortson

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

V. Bugaev

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

A. Falcone

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. P. Connolly

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

J. H. Buckley

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge