Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. H. Black is active.

Publication


Featured researches published by J. H. Black.


Astronomy and Astrophysics | 2005

An atomic and molecular database for analysis of submillimetre line observations

Fredrik L. Schöier; F. F. S. van der Tak; E. F. van Dishoeck; J. H. Black

Atomic and molecular data for the transitions of a number of astrophysically interesting species are summarized, in- cluding energy levels, statistical weights, Einstein A-coefficients and collisional rate coefficients. Available collisional data from quantum chemical calculations and experiments are extrapolated to higher energies (up to E/k ∼ 1000 K). These data, which are made publically available through the WWW at http://www.strw.leidenuniv.nl/∼moldata, are essential input for non-LTE line radiative transfer programs. An online version of a computer program for performing statistical equilibrium calcu- lations is also made available as part of the database. Comparisons of calculated emission lines using different sets of collisional rate coefficients are presented. This database should form an important tool in analyzing observations from current and future (sub)millimetre and infrared telescopes.


Astronomy and Astrophysics | 2007

A computer program for fast non-LTE analysis of interstellar line spectra

F. F. S. van der Tak; J. H. Black; Fredrik L. Schöier; D.J. Jansen; E. F. van Dishoeck

Abstract: The large quantity and high quality of modern radio and infrared line observations require efficient modeling techniques to infer physical and chemical parameters such as temperature, density, and molecular abundances. We present a computer program to calculate the intensities of atomic and molecular lines produced in a uniform medium, based on statistical equilibrium calculations involving collisional and radiative processes and including radiation from background sources. Optical depth effects are treated with an escape probability method. The program is available on the World Wide Web at http://www.sron.rug.nl/~vdtak/radex/index.shtml . The program makes use of molecular data files maintained in the Leiden Atomic and Molecular Database (LAMDA), which will continue to be improved and expanded. The performance of the program is compared with more approximate and with more sophisticated methods. An Appendix provides diagnostic plots to estimate physical parameters from line intensity ratios of commonly observed molecules. This program should form an important tool in analyzing observations from current and future radio and infrared telescopes. Note: Accepted by AA 18 A4 pages, 11 figures;


The Astrophysical Journal | 1988

The photodissociation and chemistry of interstellar CO

Ewine F. van Dishoeck; J. H. Black

Recent work on the vacuum UV absorption spectrum of CO to the description of the photodissociation of interstellar CO and its principal isotopic varieties is discussed. The effects of line broadening, self-shielding, shielding by H and H2, and isotope-selective shielding are examined as functions of depth into interstellar clouds. The photodissociation rates of the isotopic species are larger than that of (C-12)O inside the clouds by up to one to two orders of magnitude. A simple approximation to the attenuation by line absorption is given in tabular form. Computed abundances of CO and related species C and C+ are presented for a variety of interstellar clouds ranging from diffuse clouds to dense photodissociation regions. Several series of models of translucent clouds are presented which illustrate how the CO abundance increases rapidly with total cloud thickness. The variations of the isotopic abundances with depth and their sensitivity to temperature and total cloud thickness are explored in detail.


The Astrophysical Journal | 1987

Fluorescent excitation of interstellar H2

J. H. Black; Ewine F. van Dishoeck

The infrared emission spectrum of H2 excited by ultraviolet absorption, followed by fluorescence, was investigated using comprehensive models of interstellar clouds for computing the spectrum and to assess the effects on the intensity to various cloud properties, such as density, size, temperature, and the intensity of the UV radiation field. It is shown that the absolute H2 IR line intensities depend primarily on the density of the cloud and the strength of the incident UV radiation, and to a much lesser exent on the temperature of the gas, the total thickness of the cloud, and the optical properties of the grains. A variety of recent observational results are discussed with reference to theoretical models. It is shown that the rich H2 emission spectrum of the reflection nebula NGC 2023 can be reproduced by a model with density of about 10,000/cu cm, temperature of about 80 K, and UV flux approximately 300 times that of the Galactic background starlight.


Astrophysical Journal Supplement Series | 1986

Comprehensive models of diffuse interstellar clouds : physical conditions and molecular abundances

E. F. van Dishoeck; J. H. Black

The limitations of steady state models of interstellar clouds are explored by means of comparison with observational data corresponding to clouds in front of Zeta Per, Zeta Oph, Chi Oph, and Omicron Per. The improved cloud models were constructed to reproduce the observed H and H2(J) column densities for several lines of sight. The main difference from previous models is the treatment of self-shielding in the H2 lines. Other improvements over previous models are discussed as well.


Astronomy and Astrophysics | 2009

The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks

R. Visser; E. F. van Dishoeck; J. H. Black

Aims. Photodissociation by UV light is an important destruction mechanism for carbon monoxide (CO) in many astrophysical environments, ranging from interstellar clouds to protoplanetary disks. The aim of this work is to gain a better understanding of the depth dependence and isotope-selective nature of this process. Methods. We present a photodissociation model based on recent spectroscopic data from the literature, which allows us to compute depth-dependent and isotope-selective photodissociation rates at higher accuracy than in previous work. The model includes self-shielding, mutual shielding and shielding by atomic and molecular hydrogen, and it is the first such model to include the rare isotopologues C17O and 13C17O. We couple it to a simple chemical network to analyse CO abundances in diffuse and translucent clouds, photon-dominated regions, and circumstellar disks. Results. The photodissociation rate in the unattenuated interstellar radiation field is 2.6


The Astrophysical Journal | 1988

I(CO)/N(H2) conversions and molecular gas abundances in spiral and irregular galaxies

Philip R. Maloney; J. H. Black

\times


Astronomy and Astrophysics | 2007

A photon dominated region code comparison study

M. Röllig; Nicholas Paul Abel; T. A. Bell; Frank Bensch; J. H. Black; Gary J. Ferland; B. Jonkheid; I. Kamp; Michael J. Kaufman; J. Le Bourlot; F. Le Petit; R. Meijerink; O. Morata; V. Ossenkopf; E. Roueff; Gargi Shaw; Marco Spaans; A. Sternberg; J. Stutzki; W. F. Thi; E. F. van Dishoeck; P. A. M. van Hoof; Serena Viti; Mark G. Wolfire

10-10 s-1, 30% higher than currently adopted values. Increasing the excitation temperature or the Doppler width can reduce the photodissociation rates and the isotopic selectivity by as much as a factor of three for temperatures above 100 K. The model reproduces column densities observed towards diffuse clouds and PDRs, and it offers an explanation for both the enhanced and the reduced N(12CO)/N(13CO) ratios seen in diffuse clouds. The photodissociation of C17O and 13C17O shows almost exactly the same depth dependence as that of C18O and 13C18O, respectively, so 17O and 18O are equally fractionated with respect to 16O. This supports the recent hypothesis that CO photodissociation in the solar nebula is responsible for the anomalous 17O and 18O abundances in meteorites. Grain growth in circumstellar disks can enhance the N(12CO)/N(C17O) and N(12CO)/N(C18O) ratios by a factor of ten relative to the initial isotopic abundances.


Reports on Progress in Physics | 1976

Molecule formation in the interstellar gas

A Dalgarno; J. H. Black

Observations of emission in the J = 1-0 rotational transition of interstellar CO are used to obtain column densities and masses of hydrogen. By taking into account the effects of variations in molecular cloud parameters on conversion factors between integrated CO intensity and molecular hydrogen column density, it is shown that conversion factors are very sensitive to the kinetic temperature of the emitting gas. Results indicate that the gas temperatures in systems with high star formation rates can be quite high, and it is suggested that use of a standard conversion factor will lead to systematic overestimation of the amount of molecular gas. 69 references.


Astronomy and Astrophysics | 2010

Interstellar OH+, H2O+ and H3O+ along the sight-line to G10.6–0.4

M. Gerin; M. De Luca; J. H. Black; J. R. Goicoechea; E. Herbst; David A. Neufeld; E. Falgarone; B. Godard; J. C. Pearson; D. C. Lis; T. G. Phillips; T. A. Bell; Paule Sonnentrucker; F. Boulanger; J. Cernicharo; A. Coutens; E. Dartois; P. Encrenaz; Thomas F. Giesen; Paul F. Goldsmith; Harshal Gupta; C. Gry; P. Hennebelle; P. Hily-Blant; C. Joblin; M. Kazmierczak; R. Kołos; J. Krełowski; J. Martin-Pintado; Raquel Monje

Aims. We present a comparison between independent computer codes, modeling the physics and chemistry of interstellar photon dominated regions (PDRs). Our goal was to understand the mutual differences in the PDR codes and their effects on the physical and chemical structure of the model clouds, and to converge the output of different codes to a common solution. Methods. A number of benchmark models have been created, covering low and high gas densities n = 10 3 , 10 5.5 cm −3 and far ultraviolet intensities χ = 10, 10 5 in units of the Draine field (FUV: 6 < h ν< 13.6 eV). The benchmark models were computed in two ways: one set assuming constant temperatures, thus testing the consistency of the chemical network and photo-processes, and a second set determining the temperature self consistently by solving the thermal balance, thus testing the modeling of the heating and cooling mechanisms accounting for the detailed energy balance throughout the clouds. Results. We investigated the impact of PDR geometry and agreed on the comparison of results from spherical and plane-parallel PDR models. We identified a number of key processes governing the chemical network which have been treated differently in the various codes such as the effect of PAHs on the electron density or the temperature dependence of the dissociation of CO by cosmic ray induced secondary photons, and defined a proper common treatment. We established a comprehensive set of reference models for ongoing and future PDR model bench-marking and were able to increase the agreement in model predictions for all benchmark models significantly. Nevertheless, the remaining spread in the computed observables such as the atomic fine-structure line intensities serves as a warning that there is still a considerable uncertainty when interpreting astronomical data with our models.Aims. We present a comparison between independent computer codes, modeling the physics and chemistry of photon dominated regions (PDRs). Our goal was to understand the mutual differences in the PDR codes and their effects on the physical and chemical structure of the model clouds, and to converge the output of different codes to a common solution. Methods. A number of benchmark models have been calculated, covering low and high gas densities n = 103, 105.5 cm−3 and far ultraviolet intensities χ = 10, 105 (FUV: 6 < h ν < 13.6 eV). The benchmark models were computed in two ways: one set assuming constant temperatures, thus testing the consistency of the chemical network and photo-reactions, and a second set determining the temperature self consistently by solving the thermal balance, thus testing the modeling of the heating and cooling mechanisms accounting for the detailed energy balance throughout the clouds. Results. We investigated the impact of PDR geometry and agreed on the comparison of results from spherical and plane-parallel PDR models. We identified a number of key processes governing the chemical network which have been treated differently in the various codes such as the effect of PAHs on the electron density or the temperature dependence of the dissociation of CO by cosmic ray induced secondary photons, and defined a proper common treatment. We established a comprehensive set of reference models for ongoing and future PDR modeling and were able to increase the agreement in model predictions for all benchmark models significantly. Nevertheless, the remaining spread in the computed observables such as the atomic fine-structure line intensities serves as a warning that the astronomical data should not be overinterpreted.

Collaboration


Dive into the J. H. Black's collaboration.

Top Co-Authors

Avatar

M. Gerin

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

E. Falgarone

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

A. Hjalmarson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. R. Goicoechea

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Per Bergman

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

R. Liseau

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Paul F. Goldsmith

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Encrenaz

École Normale Supérieure

View shared research outputs
Researchain Logo
Decentralizing Knowledge