J. H. Girard
European Southern Observatory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. H. Girard.
Nature | 2013
S. Casassus; Gerrit van der Plas; Sebastian Perez M; William R. F. Dent; Ed Fomalont; Janis Hagelberg; A. Hales; Andrés Jordán; Dimitri Mawet; Francois Menard; Al Wootten; David J. Wilner; A. Meredith Hughes; Matthias R. Schreiber; J. H. Girard; Barbara Ercolano; H. Canovas; Pablo E. Román; Vachail Salinas
The formation of gaseous giant planets is thought to occur in the first few million years after stellar birth. Models predict that the process produces a deep gap in the dust component (shallower in the gas). Infrared observations of the disk around the young star HD 142527 (at a distance of about 140 parsecs from Earth) found an inner disk about 10 astronomical units (au) in radius (1 au is the Earth–Sun distance), surrounded by a particularly large gap and a disrupted outer disk beyond 140 au. This disruption is indicative of a perturbing planetary-mass body at about 90 au. Radio observations indicate that the bulk mass is molecular and lies in the outer disk, whose continuum emission has a horseshoe morphology. The high stellar accretion rate would deplete the inner disk in less than one year, and to sustain the observed accretion matter must therefore flow from the outer disk and cross the gap. In dynamical models, the putative protoplanets channel outer-disk material into gap-crossing bridges that feed stellar accretion through the inner disk. Here we report observations of diffuse CO gas inside the gap, with denser HCO+ gas along gap-crossing filaments. The estimated flow rate of the gas is in the range of 7 × 10−9 to 2 × 10−7 solar masses per year, which is sufficient to maintain accretion onto the star at the present rate.1. Departamento de Astronomı́a, Universidad de Chile, Casilla 36-D, Santiago, Chile 2. Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355, Santiago Chile 3. European Southern Observatory (ESO), Casilla 19001, Vitacura, Santiago, Chile 4. National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475, USA 5. Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290, Versoix, Switzerland 6. Departamento de Astronomı́a y Astrofı́sica, Pontificia Universidad Católica de Chile, Santiago, Chile 7. UMI-FCA, CNRS / INSU France (UMI 3386) , and Departamento de Astronomı́a, Universidad de Chile, Santiago, Chile. 8. CNRS / UJF Grenoble 1, UMR 5274, Institut de Planétologie et dAstrophysique de Grenoble (IPAG), France 9. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 USA 10. Department of Astronomy, U. C. Berkeley, 601 Campbell Hall, Berkeley, CA 94720 11. Departamento de Fı́sica y Astronomı́a, Universidad Valparaiso, Av. Gran Bretana 111, Valparaiso, Chile. 12. University Observatory, Ludwig-Maximillians University, Munich.
The Astrophysical Journal | 2013
Sascha P. Quanz; Adam Amara; Michael R. Meyer; Matthew A. Kenworthy; Markus Kasper; J. H. Girard
We present high-contrast observations of the circumstellar environment of the Herbig Ae/Be star HD 100546. The final 3.8 μm image reveals an emission source at a projected separation of 0. 48 ± 0. �� 04 (corresponding to ∼47 ± 4 AU) at a position angle of 8. 9 ± 0. ◦ 9. The emission appears slightly extended with a point source component with an apparent magnitude of 13.2 ± 0.4 mag. The position of the source coincides with a local deficit in polarization fraction in near-infrared polarimetric imaging data, which probes the surface of the well-studied circumstellar disk of HD 100546. This suggests a possible physical link between the emission source and the disk. Assuming a disk inclination of ∼47 ◦ , the de-projected separation of the object is ∼68 AU. Assessing the likelihood of various scenarios, we favor an interpretation of the available high-contrast data with a planet in the process of forming. Follow-up observations in the coming years can easily distinguish between the different possible scenarios empirically. If confirmed, HD 100546 “b” would be a unique laboratory to study the formation process of a new planetary system, with one giant planet currently forming in the disk and a second planet possibly orbiting in the disk gap at smaller separations.
Astronomy and Astrophysics | 2013
P. Delorme; Jonathan Gagné; J. H. Girard; A.-M. Lagrange; G. Chauvin; Marie-Eve Naud; David Lafrenière; René Doyon; Adric R. Riedel; M. Bonnefoy; Lison Malo
Context. Though only a handful of extrasolar planets have been discovered via direct imaging, each of these discoveries had tremendous impact on our understanding of planetary formation, stellar formation and cool atmosphere physics. Aims. Since many of these newly imaged giant planets orbit massive A or even B stars we investigated whether giant planets could be found orbiting low-mass stars at large separations. Methods. We have been conducting an adaptive optic imaging survey to search for planetary-mass companions of young M dwarfs of the solar neigbourhood, to probe dierent initial conditions of planetary formation. Results. We report here the direct imaging discovery of 2MASS J01033563-5515561ABb, a 12-14 MJup companion at a projected separation of 84 AU from a pair of young late M stars, with which it shares proper motion. We also detected a Keplerian-compatible orbital motion. Conclusions. This young L-type object at planet/brown dwarf mass boundary is the rst ever imaged around a binary system at a separation compatible with formation in a disc.
Astronomy and Astrophysics | 2012
Anne-Marie Lagrange; A. Boccaletti; J. Milli; G. Chauvin; M. Bonnefoy; David Mouillet; J.-C. Augereau; J. H. Girard; Sylvestre Lacour; Daniel Apai
Context. We detected in 2009 a giant, close-by planet orbiting β Pic, a young star surrounded by a disk that has been extensively studied for more than 20 years. We showed that if the planet were located on an inclined orbit, this could account for several peculiarities of the β Pictoris system. However, the available data did not permit us to measure the inclination of β Pic b with respect to the disk, and in particular to establish in which component of the disk – either the main, extended disk or the inner inclined component/disk – the planet was located. Comparison between the observed planet position and the disk orientation measured using previous imaging data was not an option because of potential biases in the measurements. Aims. Our aim is to measure precisely the planet location with respect to the dust disk using a single high-resolution image, and correcting for systematics or errors that degrade the precision of the disk and planet relative-position measurements. Methods. We gathered new NaCo data in the Ks band, with a set-up optimized to derive simultaneously the orientation(s) of the disk(s) and the planet projected position. Results. We show that the projected position of β Pic b is above the midplane of the main disk. With the current data and knowledge of the system, this implies that β Pic b cannot be located in the main disk. The data instead suggest that the planet is located in the inclined component.
Astronomy and Astrophysics | 2016
A. Zurlo; A. Vigan; R. Galicher; A.-L. Maire; D. Mesa; R. Gratton; G. Chauvin; M. Kasper; Claire Moutou; M. Bonnefoy; S. Desidera; Lyu Abe; Daniel Apai; Andrea Baruffolo; Pierre Baudoz; J. Baudrand; J.-L. Beuzit; P. Blancard; A. Boccaletti; F. Cantalloube; M. Carle; E. Cascone; Julien Charton; R. U. Claudi; A. Costille; V. De Caprio; Kjetil Dohlen; C. Dominik; D. Fantinel; Philippe Feautrier
Context. The planetary system discovered around the young A-type HR 8799 provides a unique laboratory to: a) test planet formation theories; b) probe the diversity of system architectures at these separations, and c) perform comparative (exo)planetology. Aims. We present and exploit new near-infrared images and integral-field spectra of the four gas giants surrounding HR 8799 obtained with SPHERE, the new planet finder instrument at the Very Large Telescope, during the commissioning and science verification phase of the instrument (July–December 2014). With these new data, we contribute to completing the spectral energy distribution (SED) of these bodies in the 1.0–2.5 μm range. We also provide new astrometric data, in particular for planet e, to further constrain the orbits. Methods. We used the infrared dual-band imager and spectrograph (IRDIS) subsystem to obtain pupil-stabilized, dual-band H2H3 (1.593 μm, 1.667 μm), K1K2 (2.110 μm, 2.251 μm), and broadband J (1.245 μm) images of the four planets. IRDIS was operated in parallel with the integral field spectrograph (IFS) of SPHERE to collect low-resolution (R ~ 30), near-infrared (0.94–1.64 μm) spectra of the two innermost planets HR 8799 d and e. The data were reduced with dedicated algorithms, such as the Karhunen-Loeve image projection (KLIP), to reveal the planets. We used the so-called negative planets injection technique to extract their photometry, spectra, and measure their positions. We illustrate the astrometric performance of SPHERE through sample orbital fits compatible with SPHERE and literature data. Results. We demonstrated the ability of SPHERE to detect and characterize planets in this kind of systems, providing spectra and photometry of its components. The spectra improve upon the signal-to-noise ratio of previously obtained data and increase the spectral coverage down to the Y band. In addition, we provide the first detection of planet e in the J band. Astrometric positions for planets HR 8799 bcde are reported for the epochs of July, August, and December 2014. We measured the photometric values in J, H2H3, K1K2 bands for the four planets with a mean accuracy of 0.13 mag. We found upper limit constraints on the mass of a possible planet f of 3–7 MJup . Our new measurements are more consistent with the two inner planets d and e being in a 2d:1e or 3d:2e resonance. The spectra of HR 8799 d and e are well matched by those of L6-8 field dwarfs. However, the SEDs of these objects are redder than field L dwarfs longward of 1.6 μm.
Proceedings of SPIE | 2012
Dimitri Mawet; Laurent Pueyo; Peter R. Lawson; Laurent M. Mugnier; Wesley A. Traub; A. Boccaletti; John T. Trauger; Szymon Gladysz; Eugene Serabyn; J. Milli; Ruslan Belikov; Markus Kasper; Pierre Baudoz; Bruce A. Macintosh; Christian Marois; Ben R. Oppenheimer; Harrisson H. Barrett; Jean-Luc Beuzit; Nicolas Devaney; J. H. Girard; Olivier Guyon; John E. Krist; B. Mennesson; David Mouillet; Naoshi Murakami; Lisa A. Poyneer; Dmitri Savransky; Christophe Verinaud; James K. Wallace
Small-angle coronagraphy is technically and scientifically appealing because it enables the use of smaller telescopes, allows covering wider wavelength ranges, and potentially increases the yield and completeness of circumstellar environment – exoplanets and disks – detection and characterization campaigns. However, opening up this new parameter space is challenging. Here we will review the four posts of high contrast imaging and their intricate interactions at very small angles (within the first 4 resolution elements from the star). The four posts are: choice of coronagraph, optimized wavefront control, observing strategy, and post-processing methods. After detailing each of the four foundations, we will present the lessons learned from the 10+ years of operations of zeroth and first-generation adaptive optics systems. We will then tentatively show how informative the current integration of second-generation adaptive optics system is, and which lessons can already be drawn from this fresh experience. Then, we will review the current state of the art, by presenting world record contrasts obtained in the framework of technological demonstrations for space-based exoplanet imaging and characterization mission concepts. Finally, we will conclude by emphasizing the importance of the cross-breeding between techniques developed for both ground-based and space-based projects, which is relevant for future high contrast imaging instruments and facilities in space or on the ground.
Astronomy and Astrophysics | 2013
J. Rameau; G. Chauvin; A.-M. Lagrange; Hubert Klahr; M. Bonnefoy; Christoph Mordasini; Mariangela Bonavita; S. Desidera; Christophe Dumas; J. H. Girard
Context. Over the past decade, direct imaging has confirmed the existence of substellar companions on wide orbits from their parent stars. To understand the formation and evolution mechanisms of these companions, their individual as well as the full population properties must be characterized. Aims. We aim at detecting giant planet and/or brown dwarf companions around young, nearby, and dusty stars. Our goal is also to provide statistics on the population of giant planets at wide-orbits and discuss planet formation models. Methods. We report the results of a deep survey of 59 stars, members of young stellar associations. The observations were conducted with the ground-based adaptive optics system VLT/NaCo at L � -band (3.8 μm). We used angular differential imaging to reach the best detection performances down to the planetary mass regime. A statistical analysis of about 60% of the young and southern A-F stars closer than 65 pc allowed us to derive the fraction of giant planets on wide orbits. We used gravitational instability models and planet population synthesis models following the core-accretion scenario to discuss the occurrence of these companions. Results. We resolve and characterize new visual binaries and do not detect any new substellar companion. The survey’s median detection performance reaches contrasts of 10 mag at 0.5 �� and 11.5 mag at 1.0 �� . We find the occurrence of planets to be between 10.8 and 24.8% at 68% confidence level assuming a uniform distribution of planets in the interval [1, 13] MJ and [1, 1000] AU. Considering the predictions of planetary formation models, we set important constraints on the occurrence of massive planets and brown dwarf companions that would have formed by gravitational instability. We show that this mechanism favors the formation of rather massive clumps (Mclump > 30 MJ )a t wide (a > 40 AU) orbits, which may evolve dynamically and/or fragment. For the population of close-in giant planets that would have formed by core accretion (without considering any planet – planet scattering), our survey marginally explores physical separations (≤20 AU) and cannot constrain this population. We will have to wait for the next generation of planet finders to start exploring that population, and even for the extremely large telescopes for a more complete overlap with other planet-hunting techniques.Context. Over the past decade, direct imaging has confirmed the existe nce of substellar companions on wide orbits from their paren t stars. To understand the formation and evolution mechanism s of these companions, their individual, as well as the full p opulation properties, must be characterized. Aims. We aim at detecting giant planet and /or brown dwarf companions around young, nearby, and dusty st ars. Our goal is also to provide statistics on the population of giant planets at wid e-orbits and discuss planet formation models. Methods. We report the results of a deep survey of 59 stars, members of y oung stellar associations. The observations were conducte with the ground-based adaptive optics system VLT /NaCo atL -band (3.8μm). We used angular di fferential imaging to reach optimal detection performances down to the the planetary mass regim e. A statistical analysis of about 60 % of the young and southe rn A-F stars closer than 65 pc allows us to derive the fraction of gia nt planets on wide orbits. We use gravitational instability models and planet population synthesis models following the core-acc retion scenario to discuss the occurrence of these companio ns. Results. We resolve and characterize new visual binaries and do not de tect any new substellar companion. The survey’s median detection performance reaches contrasts of 10 mag at 0 .5 ′′ and 11.5 mag at 1.0 . We find the occurrence of planets to be between 10.8 and 24.8 % at 68 % confidence level assuming a uniform distribution of planets in the interval [1 , 13] MJ and [1, 1000] AU. Considering the predictions of planetary formation models , we set important constraints on the occurrence of massive p lanets and brown dwarf companions that would have formed by gravitatio nal instability. We show that this mechanism favors the form ation of rather massive clump ( Mclump > 30 MJ) at wide (a > 40 AU) orbits which might evolve dynamically and /or fragment. For the population of close-in giant planets that would have formed by core accretion (without considering any planet planet s ca tering), our survey marginally explore physical separations ( ≤ 20 AU) and cannot constrain this population. We will have to w ait for the next generation of planet finders to start exploring that populat ion and even for the extremely large telescopes for a more com plete overlap with other planet hunting techniques.
Astronomy and Astrophysics | 2016
A. Vigan; M. Bonnefoy; C. Ginski; H. Beust; R. Galicher; Markus Janson; J.-L. Baudino; Esther Buenzli; J. Hagelberg; Valentina D'Orazi; S. Desidera; A.-L. Maire; R. Gratton; Jean-François Sauvage; G. Chauvin; C. Thalmann; L. Malo; G. Salter; A. Zurlo; J. Antichi; Andrea Baruffolo; Pierre Baudoz; P. Blanchard; A. Boccaletti; J.-L. Beuzit; M. Carle; R. U. Claudi; A. Costille; A. Delboulbé; Kjetil Dohlen
GJ 758 B is a brown dwarf companion to a nearby (15.76%) solar-type, metal-rich (M/H = +0.2 dex) main-sequence star (G9V) that was discovered with Subaru/HiCIAO in 2009. From previous studies, it has drawn attention as being the coldest (similar to 600 K) companion ever directly imaged around a neighboring star. We present new high-contrast data obtained during the commissioning of the SPHERE instrument at the Very Large Telescope (VLT). The data was obtained in Y-, J-, H-, and K-s-bands with the dual-band imaging (DBI) mode of IRDIS, thus providing a broad coverage of the full near-infrared (near-IR) range at higher contrast and better spectral sampling than previously reported. In this new set of high-quality data, we report the re-detection of the companion, as well as the first detection of a new candidate closer-in to the star. We use the new eight photometric points for an extended comparison of GJ 758 B with empirical objects and four families of atmospheric models. From comparison to empirical object, we estimate a T8 spectral type, but none of the comparison objects can accurately represent the observed near-IR fluxes of GJ 758 B. From comparison to atmospheric models, we attribute a T-eff = 600 +/- 100 K, but we find that no atmospheric model can adequately fit all the fluxes of GJ 758 B. The lack of exploration of metal enrichment in model grids appears as a major limitation that prevents an accurate estimation of the companion physical parameters. The photometry of the new candidate companion is broadly consistent with L-type objects, but a second epoch with improved photometry is necessary to clarify its status. The new astrometry of GJ 758 B shows a significant proper motion since the last epoch. We use this result to improve the determination of the orbital characteristics using two fitting approaches: Least-Squares Monte Carlo and Markov chain Monte Carlo. We confirm the high-eccentricity of the orbit (peak at 0.5), and find a most likely semi-major axis of 46.05 AU. We also use our imaging data, as well as archival radial velocity data, to reject the possibility that this is a false positive effect created by an unseen, closer-in, companion. Finally, we analyze the sensitivity of our data to additional closer-in companions and reject the possibility of other massive brown dwarf companions down to 4-5 AU.
Astronomy and Astrophysics | 2016
M. Bonnefoy; A. Zurlo; J.-L. Baudino; Philip W. Lucas; D. Mesa; A. L. Maire; A. Vigan; R. Galicher; D. Homeier; F. Marocco; R. Gratton; G. Chauvin; F. Allard; S. Desidera; M. Kasper; Claire Moutou; A.-M. Lagrange; J. Antichi; Andrea Baruffolo; J. Baudrand; J.-L. Beuzit; A. Boccaletti; F. Cantalloube; M. Carbillet; Julien Charton; R. U. Claudi; A. Costille; Kjetil Dohlen; C. Dominik; D. Fantinel
Context. The system of fourplanets discovered around the intermediate-mass star HR8799 offers a unique opportunity to test planet formation theories at large orbital radii and to probe the physics and chemistry at play in the atmospheres of self-luminous young (~30 Myr) planets. We recently obtained new photometry of the four planets and low-resolution (R ~ 30) spectra of HR8799 d and e with the SPHERE instrument (Paper III). Aims. In this paper (Paper IV), we aim to use these spectra and available photometry to determine how they compare to known objects, what the planet physical properties are, and how their atmospheres work. Methods. We compare the available spectra, photometry, and spectral energy distribution (SED) of the planets to field dwarfs and young companions. In addition, we use the extinction from corundum, silicate (enstatite and forsterite), or iron grains likely to form in the atmosphere of the planets to try to better understand empirically the peculiarity of their spectrophotometric properties. To conclude, we use three sets of atmospheric models (BT-SETTL14, Cloud-AE60, Exo-REM) to determine which ingredients are critically needed in the models to represent the SED of the objects, and to constrain their atmospheric parameters (T_(eff), log g, M/H). Results. We find that HR8799d and e properties are well reproduced by those of L6-L8 dusty dwarfs discovered in the field, among which some are candidate members of young nearby associations. No known object reproduces well the properties of planets b and c. Nevertheless, we find that the spectra and WISE photometry of peculiar and/or young early-T dwarfs reddened by submicron grains made of corundum, iron, enstatite, or forsterite successfully reproduce the SED of these planets. Our analysis confirms that only the Exo-REM models with thick clouds fit (within 2σ) the whole set of spectrophotometric datapoints available for HR8799 d and e for T_(eff) = 1200 K, log g in the range 3.0−4.5, and M/H = +0.5. The models still fail to reproduce the SED of HR8799c and b. The determination of the metallicity, log g, and cloud thickness are degenerate. Conclusions. Our empirical analysis and atmospheric modelling show that an enhanced content in dust and decreased CIA of H_2 is certainly responsible for the deviation of the properties of the planet with respect to field dwarfs. The analysis suggests in addition that HR8799c and b have later spectral types than the two other planets, and therefore could both have lower masses.
Nature | 2015
A. Boccaletti; Christian Thalmann; Anne-Marie Lagrange; Markus Janson; Jean Charles Augereau; Glenn Schneider; J. Milli; C. A. Grady; John H. Debes; M. Langlois; David Mouillet; Thomas Henning; C. Dominik; Anne Lise Maire; Jean-Luc Beuzit; Kjetil Dohlen; N. Engler; Markus Feldt; T. Fusco; C. Ginski; J. H. Girard; Dean C. Hines; Markus Kasper; Dimitri Mawet; Francois Menard; Michael R. Meyer; Claire Moutou; J. Olofsson; Timothy J. Rodigas; Jean Francois Sauvage
In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source. These ‘debris disks’ were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the β Pictoris system, in which the known planet generates an observable warp in the disk. The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units. Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10–60 astronomical units, persisting over intervals of 1–4 years. All these features appear to move away from the star at projected speeds of 4–10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories.