Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J.I. Lagares is active.

Publication


Featured researches published by J.I. Lagares.


Physics in Medicine and Biology | 2003

Ionization chamber dosimetry of small photon fields: a Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams

F. Sánchez-Doblado; Pedro Andreo; Roberto Capote; Antonio Leal; M. Perucha; R. Arráns; L. Núñez; Ernesto Mainegra; J.I. Lagares; E. Carrasco

Absolute dosimetry with ionization chambers of the narrow photon fields used in stereotactic techniques and IMRT beamlets is constrained by lack of electron equilibrium in the radiation field. It is questionable that stopping-power ratio in dosimetry protocols, obtained for broad photon beams and quasi-electron equilibrium conditions, can be used in the dosimetry of narrow fields while keeping the uncertainty at the same level as for the broad beams used in accelerator calibrations. Monte Carlo simulations have been performed for two 6 MV clinical accelerators (Elekta SL-18 and Siemens Mevatron Primus), equipped with radiosurgery applicators and MLC. Narrow circular and Z-shaped on-axis and off-axis fields, as well as broad IMRT configured beams, have been simulated together with reference 10 x 10 cm2 beams. Phase-space data have been used to generate 3D dose distributions which have been compared satisfactorily with experimental profiles (ion chamber, diodes and film). Photon and electron spectra at various depths in water have been calculated, followed by Spencer-Attix (delta = 10 keV) stopping-power ratio calculations which have been compared to those used in the IAEA TRS-398 code of practice. For water/air and PMMA/air stopping-power ratios, agreements within 0.1% have been obtained for the 10 x 10 cm2 fields. For radiosurgery applicators and narrow MLC beams, the calculated s(w,air) values agree with the reference within +/-0.3%, well within the estimated standard uncertainty of the reference stopping-power ratios (0.5%). Ionization chamber dosimetry of narrow beams at the photon qualities used in this work (6 MV) can therefore be based on stopping-power ratios data in dosimetry protocols. For a modulated 6 MV broad beam used in clinical IMRT, s(w,air) agrees within 0.1% with the value for 10 x 10 cm2, confirming that at low energies IMRT absolute dosimetry can also be based on data for open reference fields. At higher energies (24 MV) the difference in s(w,air) was up to 1.1%, indicating that the use of protocol data for narrow beams in such cases is less accurate than at low energies, and detailed calculations of the dosimetry parameters involved should be performed if similar accuracy to that of 6 MV is sought.


International Journal of Radiation Oncology Biology Physics | 2003

Routine IMRT verification by means of an automated Monte Carlo simulation system

Antonio Leal; F. Sánchez-Doblado; R. Arráns; J. Roselló; Ester Carrasco Pavón; J.I. Lagares

PURPOSE A tool to simulate complete intensity-modulated radiation therapy (IMRT) treatments with the Monte Carlo (MC) method has been developed. This application is based on a distribution model to employ as short processing times as possible for an operative verification. MATERIALS AND METHODS The Clinical Primus-Siemens Linac beam was simulated with MC, using the EGS4 OMEGA-BEAM code package. An additional home-made program prepares the appropriate parameters for the code, using as input the file sent from the planning system to the linac. These parameters are adapted to the simulation code, making physical and clinical subdivisions of the global simulation of the treatment. Each resultant partition is ordered to a client personal computer in a cluster with 47 machines under a Linux environment. The verification procedure starts delivering the treatment on a plastic phantom containing an ionization chamber. If differences are less than 2%, films are inserted at selected planes in the phantom and the treatment is delivered again to evaluate the relative doses. When matching between treatment planning system (TPS), film, and MC is acceptable, a new evaluation of the patient is then performed between TPS and MC. Three different cases are shown to prove the applicability of the verification model. RESULTS Acceptable agreement between the three methods used was obtained. The results are presented using different analysis tools. The actual time employed to simulate the total treatment in each case was no more than 5 h, depending on the number of segments. CONCLUSIONS The MC model presented is fully automated, and results can be achieved within the operative time limits. The procedure is a reliable tool to verify any IMRT treatment.


Physics in Medicine and Biology | 2012

Estimation of neutron-equivalent dose in organs of patients undergoing radiotherapy by the use of a novel online digital detector

F. Sánchez-Doblado; C. Domingo; F. Gómez; B. Sánchez-Nieto; J. L. Muñiz; M.J. García-Fusté; M. R. Expósito; R. Barquero; Günther H. Hartmann; J.A. Terrón; J. Pena; Roberto Méndez; F. Gutierrez; F. X. Guerre; J. Roselló; L. Núñez; L Brualla-González; F. Manchado; A. Lorente; Eduardo Gallego; R. Capote; D. Planes; J.I. Lagares; X. Gónzalez-Soto; F Sansaloni; R. Colmenares; K. Amgarou; E. Morales; R Bedogni; J. P. Cano

Neutron peripheral contamination in patients undergoing high-energy photon radiotherapy is considered as a risk factor for secondary cancer induction. Organ-specific neutron-equivalent dose estimation is therefore essential for a reasonable assessment of these associated risks. This work aimed to develop a method to estimate neutron-equivalent doses in multiple organs of radiotherapy patients. The method involved the convolution, at 16 reference points in an anthropomorphic phantom, of the normalized Monte Carlo neutron fluence energy spectra with the kerma and energy-dependent radiation weighting factor. This was then scaled with the total neutron fluence measured with passive detectors, at the same reference points, in order to obtain the equivalent doses in organs. The latter were correlated with the readings of a neutron digital detector located inside the treatment room during phantom irradiation. This digital detector, designed and developed by our group, integrates the thermal neutron fluence. The correlation model, applied to the digital detector readings during patient irradiation, enables the online estimation of neutron-equivalent doses in organs. The model takes into account the specific irradiation site, the field parameters (energy, field size, angle incidence, etc) and the installation (linac and bunker geometry). This method, which is suitable for routine clinical use, will help to systematically generate the dosimetric data essential for the improvement of current risk-estimation models.


Physics in Medicine and Biology | 2005

Microionization chamber for reference dosimetry in IMRT verification: clinical implications on OAR dosimetric errors

F. Sánchez-Doblado; R. Capote; Antonio Leal; J. Roselló; J.I. Lagares; R. Arráns; Günther H. Hartmann

Intensity modulated radiotherapy (IMRT) has become a treatment of choice in many oncological institutions. Small fields or beamlets with sizes of 1 to 5 cm2 are now routinely used in IMRT delivery. Therefore small ionization chambers (IC) with sensitive volumes 0.1 cm3 are generally used for dose verification of an IMRT treatment. The measurement conditions during verification may be quite different from reference conditions normally encountered in clinical beam calibration, so dosimetry of these narrow photon beams pertains to the so-called non-reference conditions for beam calibration. This work aims at estimating the error made when measuring the organ at risks (OAR) absolute dose by a micro ion chamber (microIC) in a typical IMRT treatment. The dose error comes from the assumption that the dosimetric parameters determining the absolute dose are the same as for the reference conditions. We have selected two clinical cases, treated by IMRT, for our dose error evaluations. Detailed geometrical simulation of the microIC and the dose verification set-up was performed. The Monte Carlo (MC) simulation allows us to calculate the dose measured by the chamber as a dose averaged over the air cavity within the ion-chamber active volume (D(air)). The absorbed dose to water (D(water)) is derived as the dose deposited inside the same volume, in the same geometrical position, filled and surrounded by water in the absence of the ion chamber. Therefore, the D(water)/D(air) dose ratio is the MC estimator of the total correction factor needed to convert the absorbed dose in air into the absorbed dose in water. The dose ratio was calculated for the microIC located at the isocentre within the OARs for both clinical cases. The clinical impact of the calculated dose error was found to be negligible for the studied IMRT treatments.


Medical Physics | 2014

A new online detector for estimation of peripheral neutron equivalent dose in organ.

L. Irazola; M. Lorenzoli; R. Bedogni; A. Pola; J.A. Terrón; B. Sánchez-Nieto; M.R. Expósito; J.I. Lagares; F Sansaloni; F. Sánchez-Doblado

PURPOSE Peripheral dose in radiotherapy treatments represents a potential source of secondary neoplasic processes. As in the last few years, there has been a fast-growing concern on neutron collateral effects, this work focuses on this component. A previous established methodology to estimate peripheral neutron equivalent doses relied on passive (TLD, CR39) neutron detectors exposed in-phantom, in parallel to an active [static random access memory (SRAMnd)] thermal neutron detector exposed ex-phantom. A newly miniaturized, quick, and reliable active thermal neutron detector (TNRD, Thermal Neutron Rate Detector) was validated for both procedures. This first miniaturized active system eliminates the long postprocessing, required for passive detectors, giving thermal neutron fluences in real time. METHODS To validate TNRD for the established methodology, intrinsic characteristics, characterization of 4 facilities [to correlate monitor value (MU) with risk], and a cohort of 200 real patients (for second cancer risk estimates) were evaluated and compared with the well-established SRAMnd device. Finally, TNRD was compared to TLD pairs for 3 generic radiotherapy treatments through 16 strategic points inside an anthropomorphic phantom. RESULTS The performed tests indicate similar linear dependence with dose for both detectors, TNRD and SRAMnd, while a slightly better reproducibility has been obtained for TNRD (1.7% vs 2.2%). Risk estimates when delivering 1000 MU are in good agreement between both detectors (mean deviation of TNRD measurements with respect to the ones of SRAMnd is 0.07 cases per 1000, with differences always smaller than 0.08 cases per 1000). As far as the in-phantom measurements are concerned, a mean deviation smaller than 1.7% was obtained. CONCLUSIONS The results obtained indicate that direct evaluation of equivalent dose estimation in organs, both in phantom and patients, is perfectly feasible with this new detector. This will open the door to an easy implementation of specific peripheral neutron dose models for any type of treatment and facility.


Physics in Medicine and Biology | 2003

Total skin electron therapy treatment verification: Monte Carlo simulation and beam characteristics of large non-standard electron fields

Ester Carrasco Pavón; F. Sánchez-Doblado; Antonio Leal; Roberto Capote; J.I. Lagares; M. Perucha; R. Arráns

Total skin electron therapy (TSET) is a complex technique which requires non-standard measurements and dosimetric procedures. This paper investigates an essential first step towards TSET Monte Carlo (MC) verification. The non-standard 6 MeV 40 x 40 cm2 electron beam at a source to surface distance (SSD) of 100 cm as well as its horizontal projection behind a polymethylmethacrylate (PMMA) screen to SSD = 380 cm were evaluated. The EGS4 OMEGA-BEAM code package running on a Linux home made 47 PCs cluster was used for the MC simulations. Percentage depth-dose curves and profiles were calculated and measured experimentally for the 40 x 40 cm2 field at both SSD = 100 cm and patient surface SSD = 380 cm. The output factor (OF) between the reference 40 x 40 cm2 open field and its horizontal projection as TSET beam at SSD = 380 cm was also measured for comparison with MC results. The accuracy of the simulated beam was validated by the good agreement to within 2% between measured relative dose distributions, including the beam characteristic parameters (R50, R80, R100, Rp, E0) and the MC calculated results. The energy spectrum, fluence and angular distribution at different stages of the beam (at SSD = 100 cm, at SSD = 364.2 cm, behind the PMMA beam spoiler screen and at treatment surface SSD = 380 cm) were derived from MC simulations. Results showed a final decrease in mean energy of almost 56% from the exit window to the treatment surface. A broader angular distribution (FWHM of the angular distribution increased from 13 degrees at SSD = 100 cm to more than 30 degrees at the treatment surface) was fully attributable to the PMMA beam spoiler screen. OF calculations and measurements agreed to less than 1%. The effect of changing the electron energy cut-off from 0.7 MeV to 0.521 MeV and air density fluctuations in the bunker which could affect the MC results were shown to have a negligible impact on the beam fluence distributions. Results proved the applicability of using MC as a treatment verification tool for complex radiotherapy techniques.


Archive | 2009

On line neutron dose evaluation in patients under radiotherapy

F. Sánchez-Doblado; C. Domingo; F. Gómez; J. L. Muñiz; R. Barquero; M.J. García-Fusté; Günther H. Hartmann; M.T. Romero; J.A. Terrón; J. Pena; H. Schuhmacher; F. Wissmann; R. Böttger; A. Zimbal; F. Gutierrez; F. X. Guerre; J. Roselló; L. Núñez; L. Brualla; F. Manchado; A. Lorente; Eduardo Gallego; R. Capote; D. Planes; J.I. Lagares; R. Arráns; R. Colmenares; K. Amgarou; E. Morales; J. P. Cano

Current improvements in radiotherapy require methods to evaluate their costs and benefits. A possible counterpart of the benefit is the creation of a secondary, radiation induced cancer. A new procedure is presented to assess the peripheral dose delivered to the patients due to photo-neutrons by means of a new on line digital detector. The events in the monitor have been correlated with the neutron dose by Monte Carlo simulations and experimental measurements using CR39 and TLD. This digital detector was employed at 6 different linacs, with energies ranging from 6 to 23 MV, obtaining the doses received in each organ of the patient. Additionally, the ambient dose equivalent was determined finding values from 0 to 470 mSv for complete treatments.


Biomedical Physics & Engineering Express | 2015

Analytical model for photon peripheral dose estimation in radiotherapy treatments

B. Sánchez-Nieto; R. El-far; L. Irazola; M. Romero-Expósito; J.I. Lagares; J.C. Mateo; J.A. Terrón; F Sánchez Doblado

This work aims to generate a simple analytical model that allows estimation of peripheral photon equivalent dose to organs of individual patients, valid for any isocentric technique. Photon radiation scattered in the LINAC head has been simulated as a virtual source of radiation emitting isotropically so that, before reaching a point inside the patient, it decreases with the square law and with attenuation due to air and tissue. Leakage has been simulated as a constant background dose along the patient. Firstly, a dose-to-points basic model was proposed and parameterized by fitting it to absorbed doses measured with TLD-700 in a humanoid phantom. Secondly, this model was generalized to any other situation involving intensity-modulated beams of any size and shape. Validation of this general model, usable beyond 10 cm from the field edge, was carried out by comparing estimation with TLD-100 doses for VMAT and IMRT treatments as well as with experimental data and models existing in the bibliography. Finally, an equivalent dose-to-organs model has been proposed by rescaling individual anatomical dimensions onto a mathematical phantom in order to make an estimation of organ length for dose calculation. The parameterized extended model, accounting for intensity-modulated beams of any shape, predicts measurements with a maximum relative uncertainty of ±25%. This general model, easy to apply in a clinical routine thanks to the ready availability of input parameters, has been proposed and validated for estimation of photon equivalent doses to peripheral organs. Finally, as a first step, it has been implemented into a piece of software termed PERIPHOCAL (PERIpheral PHOton CALculation), which is easily transferred to a commercial treatment planning system (TPS).


Radiotherapy and Oncology | 2012

Postal dosimetry audit test for small photon beams

María del Mar Espinosa; Luis Núñez; José Luis Muñiz; J.I. Lagares; Miguel Embid; J.M. Gómez-Ros

BACKGROUND AND PURPOSE Small radiation beams (<4 cm width) are being increasingly used in the delivery of advanced techniques as Intensity Modulated Radiotherapy (IMRT) and Stereotactic Radiosurgery (SRS). Dose measurements in small beams present challenges not encountered for larger beams. A postal audit with Thermoluminiscent Dosimeters (TLD) was developed to check the doses in small photon beams. A validation test in real conditions was carried out in fourteen centres. MATERIAL AND METHODS The TLD postal audit employs very small chips (1×1×1 mm(3)) of TLD-100 inserted at 5 and 10 cm of depth in a cylindrical PMMA phantom designed for this purpose. This experimental system is mailed to the audited centres to be irradiated with beams of 1 and 3 cm of side or diameter. The prescribeddose is 1.5 Gy at 10 cm. The properties of this system were studied experimentally and by Monte Carlo (MC) simulation, before the external test. RESULTS Deviations between the prescribed and measured absorbed doses are below 5% for 69% (1×1 cm(2) beam) and 64% (3×3 cm(2) beam) of the audited centres. When deviations are above 5%, their causes have been investigated and led to corrections. CONCLUSION The developed postal audit is suitable to verify the absorbed doses in small photon beams with an accuracy of 2.9% (1 s).


Physics in Medicine and Biology | 2003

The wall correction factor for a spherical ionization chamber used in brachytherapy source calibration

Angelo Piermattei; L. Azario; Andrea Fidanzio; P. Viola; C Dell'Omo; L Iadanza; Vincenzo Fusco; J.I. Lagares; Roberto Capote

The effect of wall chamber attenuation and scattering is one of the most important corrections that must be determined when the linear interpolation method between two calibration factors of an ionization chamber is used. For spherical ionization chambers the corresponding correction factors A(w) have to be determined by a non-linear trend of the response as a function of the wall thickness. The Monte Carlo and experimental data here reported show that the A(w) factors obtained for an Exradin A4 chamber, used in the brachytherapy source calibration, in terms of reference air kerma rate, are up to 1.2% greater than the values obtained by the linear extrapolation method for the studied beam qualities. Using the Aw factors derived from Monte Carlo calculations, the accuracy of the calibration factor N(K,Ir) for the Exradin A4, obtained by the interpolation between two calibration factors, improves about 0.6%. The discrepancy between the new calculated factor and that obtained using the complete calibration curve of the ion-chamber and the 192Ir spectrum is only 0.1%.

Collaboration


Dive into the J.I. Lagares's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Sánchez-Nieto

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

R. Capote

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

J. Roselló

University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Günther H. Hartmann

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

C. Domingo

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge