Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Ignacio Casal is active.

Publication


Featured researches published by J. Ignacio Casal.


Journal of Experimental Medicine | 2002

CD8α2 CD11b+ Dendritic Cells Present Exogenous Virus-like Particles to CD8+ T Cells and Subsequently Express CD8α and CD205 Molecules

Gabriel Morón; Paloma Rueda; J. Ignacio Casal; Claude Leclerc

Recombinant porcine parvovirus virus-like particles (PPV-VLPs) are particulate exogenous antigens that induce a strong, specific cytotoxic T lymphocyte (CTL) response in the absence of adjuvant. In the present report, we demonstrate in vivo that dendritic cells (DCs) present PPV-VLPs to CD8+ T cells after intracellular processing. PPV-VLPs are captured by DCs with a high efficacy, which results in the delivery of these exogenous antigens to 50% of the whole spleen DC population. In vivo, a few hours after injection, PPV-VLPs are presented exclusively to CD8+ T cells by CD8α− DCs, whereas 15 hours later they are presented mainly by CD8α+ DCs. After PPV-VLPs processing, a fraction of CD11b+ DCs undergo phenotypic changes, i.e., the up-regulation of CD8α and CD205 and the loss of CD4 molecules on their surface. The failure to detect mRNA coding for CD8α in CD11b+ DCs suggests that CD8α expression by these cells is not due to de novo synthesis. In recombination-activating gene knockout mice (Rag−/−), CD11b+ DCs did not express CD8α and PPV-VLPs presentation by CD8α+ DCs was severely diminished. These results indicate that both CD8α− and CD8α+ DCs play an important role in the induction of CTL responses by exogenous antigens, such as VLP.


Clinical Cancer Research | 2005

Targeting the Extracellular Domain of Fibroblast Growth Factor Receptor 3 with Human Single-Chain Fv Antibodies Inhibits Bladder Carcinoma Cell Line Proliferation

Jorge Luis Martínez-Torrecuadrada; Gabriela Cifuentes; Paula López-Serra; Pilar Saenz; Antonio Martinez; J. Ignacio Casal

Purpose: Previous gene expression studies have shown that fibroblast growth factor receptor 3 (FGFR3) is overexpressed in early stages of bladder cancer. To study the potential use of therapeutic antibodies against FGFR3, we have produced a collection of human single-chain Fv (scFv) antibody fragments by using phage display libraries. Experimental Design: Two “naïve” semi-synthetic human scFv libraries were used to select antibodies against the extracellular domain of FGFR3α(IIIc). The reactivity of the selected scFvs with a recombinant FGFR3 was characterized by an enzyme immunoassay and surface plasmon resonance analysis and with RT112 bladder carcinoma cells by a fluorescence-activated cell sorter. The capacity of the selected scFvs to block RT112 cell proliferation was determined. Results: We have isolated six human scFv antibody fragments directed against FGFR3. These human scFvs specifically bound FGFR3, but not the homologous molecule FGFR1. Biacore analysis was used to determine the affinity constants, which ranged from 12 to 40 nmol/L. Competition analysis showed that the FGF9 ligand was able to block the binding of two scFvs, 3C and 7D, to FGFR3, whereas FGF1 only blocked 7D. Immunoprecipitation and flow cytometric analysis confirmed the specificity of the antibodies to native membrane FGFR3. Two scFvs, 3C and 7D, gave an strong immunofluorescence staining of RT112 cells. Moreover, they recognized equally well wild-type and mutant FGFR3 containing the activating mutation S249C. Furthermore, they blocked proliferation of RT112 cells in a dose- and FGF-dependent manner. Conclusion: Our results suggest that these human anti-FGFR3 scFv antibodies may have potential applications as antitumoral agents in bladder cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Affinity maturation of antibodies assisted by in silico modeling

Rodrigo Barderas; Johan Desmet; Peter Timmerman; Rob H. Meloen; J. Ignacio Casal

Rational engineering methods can be applied with reasonable success to optimize physicochemical characteristics of proteins, in particular, antibodies. Here, we describe a combined CDR3 walking randomization and rational design-based approach to enhance the affinity of the human anti-gastrin TA4 scFv. The application of this methodology to TA4 scFv, displaying only a weak overall affinity for gastrin17 (KD = 6 μM), resulted in a set of nine affinity-matured scFv variants with near-nanomolar affinity (KD = 13.2 nM for scFv TA4.112). First, CDR-H3 and CDR-L3 randomization resulted in three scFvs with an overall affinity improvement of 15- to 35-fold over the parental. Then, the modeling of two scFv constructs selected from the previous step (TA4.11 and TA4.13) was followed by a combination of manual and molecular dynamics-based docking of gastrin17 into the respective binding sites, analysis of apparent packing defects, and selection of residues for mutagenesis through phage display. Nine scFv mutants were obtained from the second maturation step. A final 454-fold improvement in affinity compared with TA4 was obtained. These scFvs showed an enhanced potency to inhibit gastrin-induced proliferation in Colo 320 WT and BxPc3 tumoral cells. In conclusion, we propose a structure-based rational method to accelerate the development of affinity-matured antibody constructs with enhanced potential for therapeutic use.


Molecular & Cellular Proteomics | 2009

Identification of tumor-associated autoantigens for the diagnosis of colorectal cancer in serum using high density protein microarrays.

Ingrid Babel; Rodrigo Barderas; Ramon Diaz-Uriarte; Jorge Luis Martínez-Torrecuadrada; Marta Sanchez-Carbayo; J. Ignacio Casal

There is a mounting evidence of the existence of autoantibodies associated to cancer progression. Antibodies are the target of choice for serum screening because of their stability and suitability for sensitive immunoassays. By using commercial protein microarrays containing 8000 human proteins, we examined 20 sera from colorectal cancer (CRC) patients and healthy subjects to identify autoantibody patterns and associated antigens. Forty-three proteins were differentially recognized by tumoral and reference sera (p value <0.04) in the protein microarrays. Five immunoreactive antigens, PIM1, MAPKAPK3, STK4, SRC, and FGFR4, showed the highest prevalence in cancer samples, whereas ACVR2B was more abundant in normal sera. Three of them, PIM1, MAPKAPK3, and ACVR2B, were used for further validation. A significant increase in the expression level of these antigens on CRC cell lines and colonic mucosa was confirmed by immunoblotting and immunohistochemistry on tissue microarrays. A diagnostic ELISA based on the combination of MAPKAPK3 and ACVR2B proteins yielded specificity and sensitivity values of 73.9 and 83.3% (area under the curve, 0.85), respectively, for CRC discrimination after using an independent sample set containing 94 sera representative of different stages of progression and control subjects. In summary, these studies confirmed the presence of specific autoantibodies for CRC and revealed new individual markers of disease (PIM1, MAPKAPK3, and ACVR2B) with the potential to diagnose CRC with higher specificity and sensitivity than previously reported serum biomarkers.


Journal of Virology | 2001

C Terminus of Infectious Bursal Disease Virus Major Capsid Protein VP2 Is Involved in Definition of the T Number for Capsid Assembly

José R. Castón; Jorge Luis Martínez-Torrecuadrada; Antonio Maraver; Eleuterio Lombardo; José F. Rodríguez; J. Ignacio Casal; José L. Carrascosa

ABSTRACT Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is a double-stranded RNA virus. The IBDV capsid is formed by two major structural proteins, VP2 and VP3, which assemble to form a T=13 markedly nonspherical capsid. During viral infection, VP2 is initially synthesized as a precursor, called VPX, whose C end is proteolytically processed to the mature form during capsid assembly. We have computed three-dimensional maps of IBDV capsid and virus-like particles built up by VP2 alone by using electron cryomicroscopy and image-processing techniques. The IBDV single-shelled capsid is characterized by the presence of 260 protruding trimers on the outer surface. Five classes of trimers can be distinguished according to their different local environments. When VP2 is expressed alone in insect cells, dodecahedral particles form spontaneously; these may be assembled into larger, fragile icosahedral capsids built up by 12 dodecahedral capsids. Each dodecahedral capsid is an empty T=1 shell composed of 20 trimeric clusters of VP2. Structural comparison between IBDV capsids and capsids consisting of VP2 alone allowed the determination of the major capsid protein locations and the interactions between them. Whereas VP2 forms the outer protruding trimers, VP3 is found as trimers on the inner surface and may be responsible for stabilizing functions. Since elimination of the C-terminal region of VPX is correlated with the assembly of T=1 capsids, this domain might be involved (either alone or in cooperation with VP3) in the induction of different conformations of VP2 during capsid morphogenesis.


Clinical Cancer Research | 2013

Proteome Profiling of Cancer-Associated Fibroblasts Identifies Novel Proinflammatory Signatures and Prognostic Markers for Colorectal Cancer

Sofía Torres; Rubén Álvaro Bartolomé; Marta Mendes; Rodrigo Barderas; M. Jesús Fernandez-Aceñero; Alberto Peláez-García; Cristina Peña; María F. López-Lucendo; Roi Villar-Vázquez; Antonio García de Herreros; Félix Bonilla; J. Ignacio Casal

Purpose: Cancer-associated fibroblasts (CAF) are essential components of the stroma that play a critical role in cancer progression. This study aimed to identify novel CAFs markers that might contribute to the invasion and the prognosis of colorectal cancer. Experimental Design: The azoxymethane/dextran sodium sulfate mouse model of sporadic colon cancer represents an adequate source for the isolation of CAFs and normal fibroblasts. By using the explants technique, we purified CAFs and normal fibroblasts from colon tissues. Whole-cell extracts and supernatants were subjected to in-depth quantitative proteomic analysis by tandem mass spectrometry. Further validations of upregulated proteins in CAFs were carried out by chemokine microarray and immunohistochemical analyses of mouse and human tissues. Results: Using a fold-change of 1.4 or more, we found 132 and 125 differentially expressed proteins in whole-cell extracts and supernatants, respectively. We found CAFs-associated proinflammatory and desmoplastic signatures. The proinflammatory signature was composed of several cytokines. Among them, CCL2 and CCL8 caused an increase in migration and invasion of colorectal cancer KM12 cells. The desmoplastic signature was composed of 30 secreted proteins. In mouse and human samples, expression of LTBP2, CDH11, OLFML3, and, particularly, FSTL1 was significantly increased in the tumoral stroma, without significant expression in the cancer epithelial cells. The combination of CALU and CDH11 stromal expression showed a significant association with disease-free survival and poor prognosis. Conclusion: We have identified LTBP2, CDH11, OLFML3, and FSTL1 as selective biomarkers of cancer stroma, and CALU and CDH11 as candidate stromal biomarkers of prognostic significance in colon cancer. Clin Cancer Res; 19(21); 6006–19. ©2013 AACR.


Vaccine | 2000

Effect of different baculovirus inactivation procedures on the integrity and immunogenicity of porcine parvovirus-like particles

Paloma Rueda; Jesús Fominaya; Jan Langeveld; C. J. M. Bruschke; Carmen Vela; J. Ignacio Casal

We have demonstrated earlier the usefulness of recombinant porcine parvovirus (PPV) virus-like particles (VLPs) as an efficient recombinant vaccine for PPV. Here, we have demonstrated that preparations of PPV VLPs could be contaminated by recombinant baculoviruses. Since these baculoviruses can be a problem for the registration and safety requirements of the recombinant vaccine, we have tested different baculovirus inactivation strategies, studying simultaneously the integrity and immunogenicity of the VLPs. These methods were pasteurization, treatment with detergents and alkylation with binary ethylenimine (BEI). The structural and functional integrity of the PPV VLPs after the inactivation treatments were analyzed by electron microscopy, hemagglutination, double antibody sandwich (DAS)-ELISA and immunogenicity studies. Binary ethylenimine and Triton X-100 inactivated particles maintained all the original structural and antigenic properties. In addition, PPV VLPs were subjected to size-exclusion chromatography to analyze the presence of VP2 monomers or any other contaminant. The resulting highly purified material was used as the standard of reference to quantify PPV VLPs in order to determine the dose of vaccine by DAS-ELISA. After immunization experiments in guinea pigs, the antibody titers obtained with all the inactivation procedures were very similar. Triton X-100 treatment was selected for further testing in animals because of the speed, simplicity and safety of the overall procedure.


FEBS Letters | 1998

Development of an antigen presentation system based on plum pox potyvirus

M. Rosario Fernández-Fernández; Jorge Luis Martínez-Torrecuadrada; J. Ignacio Casal; Juan Antonio García

The development of an antigen presentation system based on the plum pox potyvirus (PPV) is here described. The amino‐terminal part of PPV capsid protein was chosen as the site for expression of foreign antigenic peptides. Modifications in this site were engineered to avoid the capability of natural transmission by aphids of this PPV vector. As a first practical attempt, different forms of an antigenic peptide (single and tandem repetition) from the VP2 capsid protein of canine parvovirus (CPV) were expressed. Both chimeras are able to infect Nicotiana clevelandii plants with similar characteristics to wild‐type virus and remain genetically stable after several plant passages. The antigenicity of purified chimeric virions was demonstrated, proving the suitability of this system for diagnostic purposes. Moreover, mice and rabbits immunized with chimeric virions developed CPV‐specific antibodies, which showed neutralizing activity.


Vaccine | 2001

Inactivated recombinant plant virus protects dogs from a lethal challenge with canine parvovirus.

Jan Langeveld; Frank R. Brennan; Jorge Luis Martínez-Torrecuadrada; Tim Jones; Ronald S. Boshuizen; Carmen Vela; J. Ignacio Casal; Søren Kamstrup; Kristian Dalsgaard; Rob H. Meloen; Mary M Bendig; W. O. Hamilton

A vaccine based upon a recombinant plant virus (CPMV-PARVO1), displaying a peptide derived from the VP2 capsid protein of canine parvovirus (CPV), has previously been described. To date, studies with the vaccine have utilized viable plant chimaeric particles (CVPs). In this study, CPMV-PARVO1 was inactivated by UV treatment to remove the possibility of replication of the recombinant plant virus in a plant host after manufacture of the vaccine. We show that the inactivated CVP is able to protect dogs from a lethal challenge with CPV following parenteral immunization with the vaccine. Dogs immunized with the inactivated CPMV-PARVO1 in adjuvant displayed no clinical signs of disease and shedding of CPV in faeces was limited following CPV challenge. All immunized dogs elicited high titres of peptide-specific antibody, which neutralized CPV in vitro. Levels of protection, virus shedding and VP2-specific antibody were comparable to those seen in dogs immunized with the same VP2- peptide coupled to keyhole limpet hemocyanin (KLH). Since plant virus-derived vaccines have the potential for cost-effective manufacture and are not known to replicate in mammalian cells, they represent a viable alternative to current replicating vaccine vectors for development of both human and veterinary vaccines.


Molecular & Cellular Proteomics | 2007

A Proteomics Analysis of Cell Signaling Alterations in Colorectal Cancer

Juan Madoz-Gurpide; Marta Cañamero; Lydia Sanchez; José Solano; Patricia Alfonso; J. Ignacio Casal

To gain further insight into alterations in cellular pathways, tumor profiling, and marker discovery in colorectal cancer (CRC) we used a new antibody microarray specific for cell signaling. Soluble protein extracts were prepared from paired tumor/normal biopsies of 11 patients diagnosed with colorectal carcinoma at different stages; four liver carcinomas were used as a reference. Antibody microarray analysis identified 46 proteins that were differentially expressed between normal colorectal epithelium and adenocarcinoma. These proteins gave a specific signature for CRC, different from other tumors, as well as a panel of novel markers and potential targets for CRC. Twenty-four proteins were validated by using a specific colorectal cancer tissue microarray and immunoblotting analysis. Together with some previously well known deregulated proteins in CRC (β-catenin, c-MYC, or p63), we found new potential markers preferentially expressed in CRC tumors: cytokeratin 13, calcineurin, CHK1, clathrin light chain, MAPK3, phospho-PTK2/focal adhesion kinase (Ser-910), and MDM2. CHK1 antibodies were particularly effective in discriminating between tumoral and normal mucosa in CRC. Moreover a global picture of alterations in signaling pathways in CRC was observed, including a significant up-regulation of different components of the epidermal growth factor receptor and Wnt/β-catenin pathways and the down-regulation of p14ARF. The experimental approach described here should be applicable to other pathologies and neoplastic processes.

Collaboration


Dive into the J. Ignacio Casal's collaboration.

Top Co-Authors

Avatar

Rodrigo Barderas

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rubén Álvaro Bartolomé

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Sofía Torres

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Peláez-García

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingrid Babel

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

María F. López-Lucendo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Roi Villar-Vázquez

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge