Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. J. Haslam is active.

Publication


Featured researches published by J. J. Haslam.


Presented at: ASME Pressure Vessels & Piping Division Conference, Denver, CO, United States, Jul 17 - Jul 21, 2005 | 2005

Corrosion Characterization of Iron-Based High-Performance Amorphous-Metal Thermal-Spray Coatings

Joseph C. Farmer; J. J. Haslam; S. D. Day; D. J. Branagan; Craig A. Blue; John D. K. Rivard; L. F. Aprigliano; Nancy Y. C. Yang; J.H. Perepezko; M. B. Beardsley

New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. One of these compositions, SAM1651, is discussed in detail to illustrate the promise of this general class of materials.


210th ECS Meeting | 2007

Corrosion Resistances of Iron-Based Amorphous Metals with Yttrium and Tungsten Additions in Hot Calcium Chloride Brine & Natural Seawater: Fe48Mo14Cr15Y2C15B6 and W-Containing Variants

Joseph C. Farmer; J. J. Haslam; S D Day; Tiangan Lian; Cheng K. Saw; Phillip D. Hailey; Jor-Shan Choi; Nancy Y. C. Yang; Craig A. Blue; William H. Peter; Joe H. Payer; D. J. Branagan

Yttrium-containing SAM1651 (Fe{sub 48.0}Cr{sub 15.0}Mo{sub 14.0}B{sub 6.0}C{sub 15.0}Y{sub 2.0}), has a critical cooling rate (CCR) of approximately 80 Kelvin per second, while SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) with no yttrium has a higher critical cooling rate of approximately 600 Kelvin per second. SAM1651s low CCR enables it to be rendered as a completely amorphous material in practical materials processes. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). The passive film stability of these Fe-based amorphous metal formulations have been found to be superior to that of conventional stainless steels, and comparable to that of Ni-based alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates.


ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference | 2006

Corrosion Resistance of Iron-Based Amorphous Metal Coatings

Joseph C. Farmer; J. J. Haslam; S. D. Day; Tiangan Lian; Raul B. Rebak; Nancy Y. C. Yang; Louis F. Aprigliano

New amorphous-metal thermal-spray coatings have been developed recently that may provide a viable coating option for spent nuclear fuel & high-level waste repositories [Pang et al. 2002; Shinimiya et al. 2005; Ponnambalam et al. 2004; Branagan et al. 2000–2004]. Some Fe-based amorphous-metal formulations have been found to have corrosion resistance comparable to that of high-performance alloys such as Ni-based Alloy C-22 [Farmer et al. 2004–2006]. These materials rely on Cr, Mo and W for enhanced corrosion resistance, while B is added to promote glass formation and Y is added to lower the critical cooling rate (CCR). Materials discussed in this paper include yttrium-containing SAM1651 with CCR ∼ 80 K/s and yttrium-free Formula 2C with CCR ∼ 600 K/s. While nickel-based Alloy C-22 and Type 316L stainless steel lose their resistance to corrosion during thermal spraying, Fe-based SAM1651 and Formula 2C amorphous-metal coatings can be applied with thermal spray processes without any significant loss of corrosion resistance. In the future, such corrosion-resistant thermal-spray coatings may enable the development of less expensive containers for spent nuclear fuel (SNF) and high-level waste (HLW), including enhanced multipurpose containers (MPCs), protected closure welds, and shields to protect containers from drips and falling rocks. These materials are extremely hard and provide enhanced resistance to abrasion and gouges from backfill operations. For example, Type 316L stainless steel has a hardness of approximately 150 VHN, Alloy C-22 has a hardness of approximately 250 VHN, while the Fe-based amorphous metals typically have hardness values of 1100–1300 VHN. Both Formula 2C and SAM1651 have high boron content which allow them to absorb neutrons, and therefore be used for enhanced criticality control. Cost savings can also be realized through the substitution of Fe-based alloy for Ni-based materials. Applications are also envisioned in oil & gas industry.© 2006 ASME


Nuclear Technology | 2006

Properties of titanium-nitride for high-level waste packaging enhancement

C. C. Scheffing; K. Jagannadham; Man-Sung Yim; M. A. Bourham; Joseph C. Farmer; J. J. Haslam; S D Day; David V. Fix; Nancy Y. C. Yang

A feasibility study of applying titanium-nitride (TiN) coating onto waste package surfaces was performed as part of efforts to enhance the long-term performance of high-level waste packages. The hypothesis examined in the study is that a successful TiN coating would provide an effective mass-transport barrier thus preventing corrosion. In the present work, single-layer TiN and multiple-layer TiN + Ti, TiN + Ti + TiN, and ZrO2 + TiN were deposited on Type 316L stainless steel substrates. The coated samples were tested for corrosion properties in different types of water using polarization and weight loss tests. Results of corrosion testing are presented and discussed.


Journal of Materials Research | 2006

A High-Performance Corrosion-Resistant Iron-Based Amorphous Metal - The Effects of Composition, Structure and Environment on Corrosion Resistance

Joseph C. Farmer; J. J. Haslam; Dan Day; Tiangan Lian; Cheng K. Saw; Phillip D. Hailey; J-S. Choi; Raul B. Rebak; Nancy Y. C. Yang; Robert Bayles; Louis F. Aprigliano; Joe H. Payer; J.H. Perepezko; K. Hildal; Enrique J. Lavernia; Leo Ajdelsztajn; D. J. Branagan; Brad Beardsley

New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative thermal phase stability, microstructure, mechanical properties, damage tolerance, and corrosion resistance. Some alloy additions are known to promote glass formation and to lower the critical cooling rate [F. Guo, S. J. Poon, Applied Physics Letters, 83 (13) 2575-2577, 2003]. Other elements are known to enhance the corrosion resistance of conventional stainless steels and nickel-based alloys [A. I. Asphahani, Materials Performance, Vol. 19, No. 12, pp. 33-43, 1980] and have been found to provide similar benefits to iron-based amorphous metals. Many of these materials can be cast as relatively thick ingots, or applied as coatings with advanced thermal spray technology. A wide variety of thermal spray processes have been developed by industry, and can be used to apply these new materials as coatings. Any of these can be used for the deposition of the formulations discussed here, with varying degrees of residual porosity and crystalline structure. Thick protective coatings have now been made that are fully dense and completely amorphous in the as-sprayed condition. An overview of the High-Performance Corrosion Resistant Materials (HPCRM) Project will be given, with particular emphasis on the corrosion resistance of several different types of iron-based amorphous metals in various environments of interest. The salt fog test has been used to compare the performance of various wrought alloys, melt-spun ribbons, arc-melted drop-cast ingots, and thermal-spray coatings for their susceptibility to corrosion in marine environments. Electrochemical tests have also been performed in seawater. Spontaneous breakdown of the passive film and localized corrosion require that the open-circuit corrosion potential exceed the critical potential. The resistance to localized corrosion is seawater has been quantified through measurement of the open-circuit corrosion potential (E{sub corr}), the breakdown potential (E{sub crit}) and the repassivation potential (E{sub rp}). The greater the difference between the open-circuit corrosion potential and the repassivation potential ({Delta}E), the more resistant a material is to modes of localized corrosion such as pitting and crevice corrosion. Cyclic polarization (CP) was used as a means of measuring the critical potential (E{sub crit}) relative to the open-circuit corrosion potential (E{sub corr}). Linear polarization (LP) has been used to determine the corrosion current (i{sub corr}) and the corresponding corrosion rate. Other aspects of the materials will also be discussed, as well as potential applications.


Archive | 2007

FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings

Joseph C. Farmer; Jor-Shan Choi; J. J. Haslam; S D Day; Nancy Y. C. Yang; T Headley; G Lucadamo; J Yio; J Chames; A Gardea; M Clift; G Blue; W Peters; John D. K. Rivard; D Harper; D Swank; Robert Bayles; E Lemieux; R Brown; T Wolejsza; Louis F. Aprigliano; D. J. Branagan; M Marshall; B Meacham; Enrique J. Lavernia; Julie M. Schoenung; Leo Ajdelsztajn; J. Dannenberg; Olivia A. Graeve; J Lewandowski

New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer or inhibitor. Comparable metallic alloys such as SAM2X5 and SAM1651 may also experience crevice corrosion under sufficiently harsh conditions. Accelerated crevice corrosion tests are now being conducted to intentionally induce crevice corrosion, and to determine those environmental conditions where such localized attack occurs. Such materials are extremely hard, and provide enhanced resistance to abrasion and gouges (stress risers) from backfill operations, and possibly even tunnel boring. The hardness of Type 316L Stainless Steel is approximately 150 VHN, that of Alloy C-22 is approximately 250 VHN, and that of HVOF SAM2X5 ranges from 1100-1300 VHN. These new materials provide a viable coating option for repository engineers. SAM2X5 and SAM1651 coatings can be applied with thermal spray processes without any significant loss of corrosion resistance. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying. Containers for the transportation, storage and disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) with corrosion resistant coatings are envisioned. For example, an enhanced multi-purpose container (MPC) could be made with such coatings, leveraging existing experience in the fabrication of such containers. These coating materials could be used to protect the final closure weld on SNF/HLW disposal containers, eliminate need for stress mitigation. Integral drip shield could be produced by directly spraying it onto the disposal container, thereby eliminating the need for an expensive titanium drip shield. In specific areas where crevice corrosion is anticipated, such as the contact point between the disposal container and pallet, HVOF coatings could be used to buildup thickness, thereby selectively adding corrosion life where it is needed. Both SAM2X5 & SAM1651 have high boron content which enable them to absorb neutrons and therefore be used for criticality control in baskets. Alloy C-22 and 316L have no neutron absorber, and cannot be used for such functions. Borated stainless steel and G


MRS Proceedings | 2005

Spectroscopic Signature of Aging in δ-Pu(Ga)

B. W. Chung; Adam J. Schwartz; Bartley B. Ebbinghaus; M.J. Fluss; J. J. Haslam; K.J.M. Blobaum; J. G. Tobin

Resonant photoemission, a variant of photoelectron spectroscopy, has been demonstrated to have sensitivity to aging of Pu samples. The spectroscopic results are correlated with resistivity measurements and are shown to be the fingerprint of mesoscopic or nanoscale internal damage in the Pu physical structure. This means that a spectroscopic signature of internal damage due to aging in Pu has been established.


Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 2009

Iron-Based Amorphous Metals: High-Performance Corrosion-Resistant Material Development

Joseph C. Farmer; Jor-Shan Choi; Cheng Saw; J. J. Haslam; Dan Day; Phillip D. Hailey; Tiangan Lian; Raul B. Rebak; J.H. Perepezko; Joe H. Payer; D. J. Branagan; Brad Beardsley; Andy D’amato; Lou Aprigliano


Journal of Materials Research | 2007

Corrosion resistance of thermally sprayed high-boron iron-based amorphous-metal coatings: Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4

Joseph C. Farmer; J. J. Haslam; S. D. Day; Tiangan Lian; Cheng K. Saw; Phillip D. Hailey; Jor-Shan Choi; Raul B. Rebak; Nancy Y. C. Yang; Joe H. Payer; J.H. Perepezko; K. Hildal; Enrique J. Lavernia; L. Ajdelsztajn; D. J. Branagan; E. J. Buffa; Louis F. Aprigliano


Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 2006

Evidence of transformation bursts during thermal cycling of a Pu-Ga alloy

K.J.M. Blobaum; C. R. Krenn; Jeremy N. Mitchell; J. J. Haslam; Mark A. Wall; T. B. Massalski; Adam J. Schwartz

Collaboration


Dive into the J. J. Haslam's collaboration.

Top Co-Authors

Avatar

Joseph C. Farmer

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nancy Y. C. Yang

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tiangan Lian

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Phillip D. Hailey

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S D Day

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Joe H. Payer

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Jor-Shan Choi

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Cheng K. Saw

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Craig A. Blue

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge