Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. J. Reed is active.

Publication


Featured researches published by J. J. Reed.


Journal of Animal Science | 2008

Effects of gestational plane of nutrition and selenium supplementation on mammary development and colostrum quality in pregnant ewe lambs

T.J. Swanson; C. J. Hammer; Justin S. Luther; D. B. Carlson; J. B. Taylor; Dale A. Redmer; T. L. Neville; J. J. Reed; Lawrence P. Reynolds; J. S. Caton; K. A. Vonnahme

To examine effects of nutritional plane and Se supplementation on colostrum quality and mammary development, individually fed, pregnant Rambouillet ewe lambs were allotted randomly to 1 of 6 treatments in a 2 x 3 factorial arrangement. Main effects included dietary Se level, which began at breeding (d = 0) [adequate Se (9.5 mug/kg of BW) vs. high Se (81.8 mug/kg of BW)], and plane of nutrition, which began at d 50 of gestation [60% (RES), 100% (CON), and 140% (HIGH) of requirements]. Upon parturition, lambs were immediately separated from dams and weighed. Three hours after lambing, colostrum yield was determined, and samples were obtained for components and immunoglobulin G (IgG) analysis. Ewes were slaughtered within 24 h of parturition, and mammary tissues were collected for determination of alveolar secretory epithelial cell proliferation index and luminal area. Gestation length was reduced (P < 0.01) in HIGH ewes compared with RES and CON ewes. Although birth weights were reduced (P < 0.01) in RES and HIGH compared with CON ewes, there was little effect of diet on placental size. Mammary gland weight was reduced (P </= 0.05) in RES compared with CON and HIGH, which were similar. However, when expressed as grams per kilogram of BW, mammary gland weight in HIGH ewes was less (P = 0.03) compared with RES and CON. Colostrum weight and volume were reduced (P < 0.01) in RES and HIGH ewes compared with CON. Although colostrum IgG concentration was greater in RES ewes compared with CON and HIGH, total IgG was lower (P </= 0.06) in RES and HIGH compared with CON ewes. The percentage of alveolar cells proliferating was increased (P < 0.04) in HIGH compared with RES ewes, with CON being intermediate. Percentage of alveoli luminal area per unit tissue area was increased (P = 0.04) in RES compared with HIGH and CON ewes, which did not differ. Selenium had no effect (P >/= 0.15) on mammary gland weight, colostrum quantity, or IgG concentration in pregnant ewe lambs. Improper nutrition from mid to late pregnancy in ewe lambs altered colostrum quality and quantity and reduced offspring birth weight, which may have negative implications for lamb health and survival during the early postnatal period.


Journal of Animal Science | 2010

Effects of plane of nutrition and selenium supply during gestation on ewe and neonatal offspring performance, body composition, and serum selenium

A. M. Meyer; J. J. Reed; T. L. Neville; J. B. Taylor; C. J. Hammer; Lawrence P. Reynolds; Dale A. Redmer; K. A. Vonnahme; J. S. Caton

To investigate the effects of nutritional plane and Se supply during gestation on ewe and offspring performance and body composition, 84 Rambouillet ewe lambs (age = 240 +/- 17 d, BW = 52.1 +/- 6.2 kg) were allocated to a 2 x 3 x 2 factorial arrangement of treatments. Factors included Se [adequate Se (ASe, 11.5 microg/kg of BW) or high Se (HSe, 77.0 microg/kg of BW)] initiated at breeding, nutritional plane [60% (restricted, RES), 100% (control, CON), or 140% (high, HIH) of NRC requirements] initiated at d 40 of gestation, and physiological stage at necropsy [3 to 24 h postpartum or d 20 of lactation]. Ewes were fed and housed individually in a temperature-controlled facility. At parturition, all lambs were removed and artificially reared until necropsy on d 20.6 +/- 0.9 of age. Ewes assigned to the treatment at d 20 of lactation were transitioned to a common diet meeting lactation requirements and were mechanically milked. From d 95 of gestation through parturition and d 20 of lactation, ewe BW and BCS were least (P <or= 0.01) in the RES treatment, intermediate in the CON treatment, and greatest in the HIH treatment. Ewes fed HSe had a greater (P <or= 0.05) BCS increase than those fed ASe during mid- and late gestation. During gestation, ewes in the HIH treatment had the greatest (P < 0.001) ADG and G:F, those in the CON treatment were intermediate, and those in the RES treatment were least, whereas ewes fed HSe had greater (P < 0.001) ADG and G:F than those fed ASe during midgestation. Ewe backfat and LM area on d 135 of gestation were least (P < 0.001) in the RES treatment, intermediate in the CON treatment, and greatest in the HIH treatment, with ewes fed HSe having greater (P <or= 0.03) backfat than those fed ASe. During the first 20 d of lactation, ewes fed the RES diet had greater (P < 0.09) G:F than those fed the CON and HIH diets. Physiological stage had no effect on ewe omental and mesenteric fat or perirenal fat weights, although both were greater (P < 0.001) for ewes fed the HIH diet than for those fed the RES and CON diets. At birth, lambs born to ewes in the RES group weighed less and had decreased curved crown rump lengths (P = 0.08) compared with those born to ewes in the CON and HIH groups, and lambs from ewes in the ASe-RES treatment were lighter (P < 0.08) than those from ewes in the HSe-RES, ASe-CON, and ASe-HIH treatments. Lambs from dams in the RES group had less (P < 0.05) BW from d 7 to 19 and decreased (P < 0.07) overall ADG compared with lambs from dams in the CON and HIH groups. Additionally, lambs from dams in the RES group had less (P <or= 0.08) perirenal fat than their counterparts, and lambs from dams in the HIH group had greater (P = 0.01) omental and mesenteric fat than lambs from dams in the RES group. Postpartum serum Se of ewes and lambs (birth and d 19) was increased (P < 0.001) by HSe feeding during gestation. Results indicate that BW differences in pregnant ewes attributable to nutritional plane are accompanied by changes in body composition and offspring BW, both of which may be affected by Se supply.


Journal of Animal Science | 2008

Effects of level and source of dietary selenium on maternal and fetal body weight, visceral organ mass, cellularity estimates, and jejunal vascularity in pregnant ewe lambs

T. L. Neville; M. A. Ward; J. J. Reed; S. A. Soto-Navarro; S. L. Julius; P. P. Borowicz; J. B. Taylor; Dale A. Redmer; Lawrence P. Reynolds; J. S. Caton

Pregnant Targhee ewe lambs (n = 32; BW = 45.6 +/- 2.2 kg) were allotted randomly to 1 of 4 treatments in a completely randomized design to examine the effects of level and source of dietary Se on maternal and fetal visceral organ mass, cellularity estimates, and maternal jejunal crypt cell proliferation and vascularity. Diets contained (DM basis) either no added Se (control) or supranutritional Se from high-Se wheat at 3.0 ppm Se (SW) or from sodium selenate at 3 (S3) or 15 (S15) ppm Se. Diets were similar in CP (15.5%) and ME (2.68 Mcal/kg of DM) and were fed to meet or exceed requirements. Treatments were initiated at 50 +/- 5 d of gestation. The control, SW, S3, and S15 treatment diets provided 2.5, 75, 75, and 375 microg of Se/kg of BW, respectively. On d 134 +/- 10 of gestation, ewes were necropsied, and tissues were harvested. Contrasts, including control vs. Se treatments (SW, S3, and S15), SW vs. S3, and S3 vs. S15, were used to evaluate differences among Se levels and sources. There were no differences in ewe initial and final BW. Full viscera and liver mass (g/kg of empty BW and g/kg of maternal BW) and maternal liver protein concentration (mg/g) and content (g) were greater (P < 0.04) in Se-treated compared with control ewes. Maternal liver protein concentration was greater (P = 0.01) in SW vs. S3 ewes, and content was greater (P = 0.01) in S15 compared with S3 ewes. Maternal jejunal mucosal DNA concentration (mg/g) was greater (P = 0.08) in SW compared with S3 ewes. Total number of proliferating cells in maternal jejunal mucosa was greater (P = 0.02) in Se-fed compared with control ewes. Capillary number density within maternal jejunal tissue was greater (P = 0.08) in S3 compared with SW ewes. Selenium treatment resulted in reduced fetal heart girth (P = 0.08). Fetal kidney RNA (P = 0.04) and protein concentrations (mg/g; P = 0.03) were greater in Se-treated compared with control ewes. These results indicate that supranutritional dietary Se increases cell numbers in maternal jejunal mucosa through increased crypt cell proliferation. No indications of toxicity were observed in any of the Se treatments.


Journal of Animal Science | 2010

Effects of stage of gestation and nutrient restriction during early to mid-gestation on maternal and fetal visceral organ mass and indices of jejunal growth and vascularity in beef cows.

A. M. Meyer; J. J. Reed; K. A. Vonnahme; S. A. Soto-Navarro; Lawrence P. Reynolds; S. P. Ford; B. W. Hess; J. S. Caton

The objectives were to evaluate effects of maternal nutrient restriction and stage of gestation on maternal and fetal visceral organ mass and indices of jejunal growth and vascularity in beef cows. Thirty multiparous beef cows (BW = 571 +/- 63 kg; BCS = 5.4 +/- 0.7) carrying female fetuses (d 30 of gestation) were allocated to receive a diet of native grass hay (CON; 12.1% CP, 70.7% IVDMD, DM basis) to meet NRC recommendations for BW gain during early gestation or a nutrient-restricted diet of millet straw (NR; 9.9% CP, 54.5% IVDMD, DM basis) to provide 68.1% of NE(m) and 86.7% of MP estimated requirements. On d 125 of gestation, 10 CON and 10 NR cows were killed and necropsied. Five remaining CON cows received the CON diet, and 5 NR cows were realimented with a concentrate supplement (13.2% CP, 77.6% IVDMD, DM basis) and the CON hay to achieve a BCS similar to CON cows by d 220 of gestation. Remaining cows were necropsied on d 245 of gestation. Cow BW and eviscerated BW (EBW) were less (P < 0.01) for NR than CON at d 125 but did not differ (P > 0.63) at d 245. Cows fed the CON diet had greater (P < 0.09) total gastrointestinal (GI) tract, omasal, and pancreatic weights. Stomach complex, ruminal, and liver weights were greater for CON than NR cows (P < 0.09) on d 125. Total GI, stomach complex, and pancreatic weights increased (P < 0.001) with day of gestation. Restricted cows had decreased (P = 0.09) duodenal RNA:DNA compared with CON. Duodenal DNA was less (P = 0.01) and jejunal RNA:DNA (P = 0.09) was greater for cows at d 125 vs. 245. Cow jejunal capillary area density increased with day of gestation (P = 0.02). Fetal BW and EBW were unaffected by dietary treatment (P > or = 0.32). Total GI tract and all components increased in mass with day of gestation (P < 0.001). Fetuses from NR dams had greater (P = 0.003) reticular mass at d 245 than CON fetuses. Fetuses from NR cows had greater (P = 0.02) percent jejunal proliferation at d 125 and greater (P = 0.03) total intestinal vascularity (mL) at d 245. Fetal jejunal DNA decreased (P = 0.09), RNA:DNA increased (P = 0.05), and total jejunal proliferating cells increased (P < 0.001) with day of gestation. Jejunal capillary area density, number density, and surface density were greater (P < 0.008) during late gestation. Results indicate that maternal and fetal intestines undergo changes during gestation, which can be affected by nutrient restriction and may partially explain differences observed in fetal development and postnatal performance.


Journal of Animal Science | 2011

Nutritional plane and selenium supply during gestation affect yield and nutrient composition of colostrum and milk in primiparous ewes.

A. M. Meyer; J. J. Reed; T. L. Neville; Jennifer F. Thorson; K. R. Maddock-Carlin; J. B. Taylor; Lawrence P. Reynolds; Dale A. Redmer; Justin S. Luther; C. J. Hammer; K. A. Vonnahme; J. S. Caton

The objectives were to investigate effects of nutritional plane and Se supply during gestation on yield and nutrient composition of colostrum and milk in first parity ewes. Rambouillet ewe lambs (n = 84, age = 240 ± 17 d, BW = 52.1 ± 6.2 kg) were allocated to 6 treatments in a 2 × 3 factorial array. Factors included Se [adequate Se (ASe, 11.5 µg/kg of BW) or high Se (HSe, 77.0 µg/kg of BW)] initiated at breeding, and nutritional plane [60 (RES), 100 (CON), or 140% (HIH) of requirements] initiated at d 40 of gestation. Ewes were fed individually from d 40, and lambs were removed at parturition. Colostrum was milked from all ewes at 3 h postpartum, and one-half of the ewes (n = 42) were transitioned to a common diet meeting lactation requirements and mechanically milked for 20 d. Colostrum yield was greater (P = 0.02) for HSe ewes than ASe, whereas CON had greater (P < 0.05) colostrum yield than RES and HIH. Colostrum Se (%) was greater (P < 0.01) for HSe than ASe. Colostrum from ewes fed HSe had less (P = 0.03) butterfat (%), but greater (P ≤ 0.05) total butterfat, solids-not-fat, lactose, protein, milk urea N, and Se than ASe. Colostrum from HIH ewes had greater (P ≤ 0.02) solids-not-fat (%) than RES, whereas RES had greater (P ≤ 0.04) butterfat (%) than CON and HIH. Colostrum from ewes fed the CON diet had greater (P = 0.01) total butterfat than HIH. Total solids-not-fat, lactose, and protein were greater (P < 0.05) in colostrum from CON than RES and HIH. Ewes fed HSe had greater (P < 0.01) milk yield (g/d and mL/d) than ASe, and CON and HIH had greater (P < 0.01) yield than RES. Milk protein (%) was greater (P ≤ 0.01) in RES compared with CON or HIH. Ewes fed HSe had greater (P < 0.01) milk Se (µg/g and mg/d) than ASe on each sampling day. Milk from CON and HIH ewes had greater (P < 0.01) total solids-not-fat, lactose, protein, and milk urea N than RES. Total Se was greater (P = 0.02) in milk from ewes fed the CON diet compared with RES. Somatic cell count and total somatic cells were greater (P ≤ 0.05) in milk from CON than RES. A cubic effect of day (P ≥ 0.01) was observed for milk yield (g and mL). Butterfat, solids-not-fat, lactose, milk urea N, and Se concentration responded quadratically (P ≤ 0.01) to day. Protein (%), total butterfat, and total Se, and somatic cells (cells/mL and cells/d) decreased linearly (P < 0.01) with day. Results indicate that gestational nutrition affects colostrum and milk yield and nutrient content, even when lactational nutrient requirements are met.


Journal of Animal Science | 2010

Ovine offspring growth and diet digestibility are influenced by maternal selenium supplementation and nutritional intake during pregnancy despite a common postnatal diet

T. L. Neville; J. S. Caton; C. J. Hammer; J. J. Reed; Justin S. Luther; J. B. Taylor; Dale A. Redmer; Lawrence P. Reynolds; K. A. Vonnahme

Lambs born from feed-restricted or overfed ewes can be lighter at birth, whereas maternal Se supplementation can increase fetal size near term. We hypothesized that birth weight would be inversely related to feed efficiency and growth rates during postnatal development. To examine the effects of maternal dietary Se and nutrient restriction or excess on postnatal lamb growth, diet digestibility, and N retention, 82 ewe lambs (52.2 ± 0.8 kg) were allotted randomly to 1 of 6 treatments in a 2 × 3 factorial arrangement. Factors were dietary Se [adequate Se (9.5 μg/kg of BW; ASe) vs. high Se (Se-enriched yeast; 81.8 μg/kg of BW; HSe)] and maternal nutritional intake [60% (restricted, RES), 100% (control, CON), or 140% (high, HI) of NRC requirements]. Selenium treatments began at breeding. Nutritional treatments began on d 50 of gestation. Lambs were immediately removed from their dams at parturition, provided artificial colostrum, and fed milk replacer until weaning. After weaning, lambs were maintained using common management and on common diets until necropsy at 180 d. Male and female lambs from RES-fed ewes were lighter (P ≤ 0.03) at birth than lambs from CON-fed ewes, with lambs from HI-fed ewes being intermediate. Although maternal nutritional intake influenced (P < 0.06) BW gain before weaning on d 57, both maternal nutritional intake and sex of offspring influenced (P ≤ 0.09) BW gain from d 57 to 180. Although maternal nutritional intake did not influence (P ≥ 0.35) female lamb BW gain, male lambs from RES-fed ewes were lighter (P ≤ 0.09) than those from CON-fed ewes until d 162. By d 180, male lambs from RES- and HI-fed ewes were lighter (P ≤ 0.09) than those from CON-fed ewes. In a subset of lambs used in a feed efficiency study, namely, those born to ASe ewes, HI maternal nutritional intake decreased (P ≤ 0.09) ADG and G:F compared with lambs born to RES- and CON-fed ewes, which did not differ (P ≥ 0.60). Conversely, when lambs were born to HSe ewes, HI maternal nutritional intake increased (P ≤ 0.01) ADG and G:F compared with CON, with RES being intermediate. Moreover, lambs born to ASe-HI ewes had decreased (P < 0.01) ADG and G:F compared with lambs born to HSe-HI ewes. Furthermore, male lambs had a greater (P < 0.01) G:F than female lambs. Maternal diet did not affect (P ≥ 0.11) N retention in male lambs. These data indicate that maternal nutrition during gestation and sex of the offspring alter postnatal growth and efficiency of growth in offspring despite similar postnatal management.


Journal of Animal Science | 2009

Effects of maternal nutrition and stage of gestation on body weight, visceral organ mass, and indices of jejunal cellularity, proliferation, and vascularity in pregnant ewe lambs.

J. S. Caton; J. J. Reed; Raymond P. Aitken; John S. Milne; P. P. Borowicz; Lawrence P. Reynolds; Dale A. Redmer; Jacqueline M. Wallace

Peripubertal ewe lambs (44.3 +/- 1.1 kg of initial BW) were used in a 2 x 3 factorial design to test the effects of plane of nutrition (diet) and stage of gestation on maternal visceral tissue mass, intestinal cellularity, crypt cell proliferation, and jejunal mucosal vascularity. Singleton pregnancies to a single sire were established by embryo transfer, and thereafter ewes were offered a control (Control) or high (High) amount of a complete diet (2.84 Mcal/kg and 15.9% CP; DM basis) to promote slow or rapid maternal growth rates. After d 90 of gestation, feed intake of the Control group was adjusted weekly to maintain BCS and meet the increasing nutrient demands of the gravid uterus. Ewes were slaughtered at 50 d (n = 6 Control; n = 5 High), 90 d (n = 8 Control; n = 6 High), or 130 d (n = 8 Control; n = 6 High) of gestation. Ewes were eviscerated and masses of individual organs were recorded. The jejunum was sampled and processed for subsequent analyses. Final ewe BW for Control-fed ewes was similar at d 50 and 90 and increased (P = 0.10) from d 90 to 130 (46.0, 48.9, and 58.2 +/- 1.6 kg, respectively), whereas final BW increased (P <or= 0.01) throughout gestation in High-fed ewes (58.3, 68.8, and 81.1 +/- 1.6 kg, respectively). Relative jejunum mass (g/kg of maternal BW) was greater (P = 0.003) in Control-fed ewes compared with High-fed ewes and tended (P = 0.11) to decrease from d 50 to 130. There were diet x stage of gestation interactions (P <or= 0.08) for ileum and small intestinal total and relative weights. Ileum mass (g/kg of maternal BW) in Control-fed ewes was less (P = 0.07) compared with High-fed ewes at d 50, was equal (P = 0.19) to High-fed ewes at d 90, and was greater (P = 0.02) than High-fed ewes at d 130. Small intestine mass (g/kg of maternal BW) was similar between Control- and High-fed ewes at d 50 and 90, but Control-fed ewes had greater (P = 0.01) mass at d 130. Jejunal RNA and protein concentrations were less (P <or= 0.07) and DNA was unaffected (P = 0.43) in Control-fed compared with High-fed ewes. Stage of gestation did not affect jejunal RNA, DNA (mg/g), or protein concentrations. Jejunal cellular proliferation was not affected by diet or stage of gestation. In jejunal mucosal tissue, capillary number decreased, whereas capillary surface density and area per capillary increased (P = 0.01) with advancing pregnancy (d 50 vs. d 130), but were independent of diet. Data indicated that intestinal mass as a proportion of maternal BW declined in overnourished, gestating ewe lambs. This response was more pronounced during late gestation and is likely explained by the increasing maternal BW and adiposity rather than by the changing cellularity or cell proliferation.


Journal of Animal Science | 2009

Effects of dietary selenium supply and timing of nutrient restriction during gestation on maternal growth and body composition of pregnant adolescent ewes.

D. B. Carlson; J. J. Reed; P. P. Borowicz; J. B. Taylor; Lawrence P. Reynolds; T. L. Neville; Dale A. Redmer; K. A. Vonnahme; J. S. Caton

The objectives were to examine effects of dietary Se supplementation and nutrient restriction during defined periods of gestation on maternal adaptations to pregnancy in primigravid sheep. Sixty-four pregnant Western Whiteface ewe lambs were assigned to treatments in a 2 x 4 factorial design. Treatments were dietary Se [adequate Se (ASe; 3.05 microg/kg of BW) vs. high Se (HSe; 70.4 microg/kg of BW)] fed as Se-enriched yeast, and plane of nutrition [control (C; 100% of NRC requirements) vs. restricted (R; 60% of NRC requirements]. Selenium treatments were fed throughout gestation. Plane of nutrition treatments were applied during mid (d 50 to 90) and late gestation (d 90 to 130), which resulted in 4 distinct plane of nutrition treatments [treatment: CC (control from d 50 to 130), RC (restricted from d 50 to 90, and control d 90 to 130), CR (control from d 50 to 90, and restricted from d 90 to 130), and RR (restricted from d 50 to 130)]. All of the pregnant ewes were necropsied on d 132 +/- 0.9 of gestation (length of gestation approximately 145 d). Nutrient restriction treatments decreased ewe ADG and G:F, as a result, RC and CR ewes had similar BW and maternal BW (MBW) at necropsy, whereas RR ewes were lighter than RC and CR ewes. From d 90 to 130, the HSe-CC ewes had greater ADG (Se x nutrition; P = 0.05) than did ASe-CC ewes, whereas ADG and G:F (Se x nutrition; P = 0.08) were less for HSe-RR ewes compared with ASe-RR ewes. The CR and RR treatments decreased total gravid uterus weight (P = 0.01) as well as fetal weight (P = 0.02) compared with RC and CC. High Se decreased total (g; P = 0.09) and relative heart mass (g/kg of MBW; P = 0.10), but increased total and relative mass of liver (P < or = 0.05) and perirenal fat (P < or = 0.06) compared with ASe. Total stomach complex mass was decreased (P < 0.01) by all the nutrient restriction treatments, but was reduced to a greater extent in CR and RR compared with RC. Total small intestine mass was similar between RC and CC ewes, but was markedly reduced (P < 0.01) in CR and RR ewes. The mass of the stomach complex and the small and large intestine relative to MBW was greater (P = 0.01) for RC than for CR ewes. Increased Se decreased jejunal DNA concentration (P = 0.07), total jejunal cell number (P = 0.03), and total proliferating jejunal cell number (P = 0.05) compared with ASe. These data indicate that increased dietary Se affected whole-body and organ growth of pregnant ewes, but the results differed depending on the plane of nutrition. In addition, the timing and duration of nutrient restriction relative to stage of pregnancy affected visceral organ mass in a markedly different fashion.


Journal of Animal Science | 2008

Effects of selenium supply and dietary restriction on maternal and fetal metabolic hormones in pregnant ewe lambs.

M. A. Ward; T. L. Neville; J. J. Reed; J. B. Taylor; D.M. Hallford; S. A. Soto-Navarro; K. A. Vonnahme; Dale A. Redmer; Lawrence P. Reynolds; J. S. Caton

The objective of these studies was to evaluate the effects of dietary restriction and Se on maternal and fetal metabolic hormones. In Exp. 1, pregnant ewe lambs (n = 32; BW = 45.6 +/- 2.3 kg) were allotted randomly to 1 of 4 treatments. Diets contained (DM basis) either no added Se (control), or supranutritional Se added as high-Se wheat at 3.0 mg/kg (Se-wheat), or sodium selenate at 3 (Se3) and 15 (Se15) mg/kg of Se. Diets (DM basis) were similar in CP (15.5%) and ME (2.68 Mcal/kg). Treatments were initiated at 50 +/- 5 d of gestation. The control, Se-wheat, Se3, and Se15 treatments provided 2.5, 75, 75, and 375 microg/kg of BW of Se, respectively. Ewe jugular blood samples were collected at 50, 64, 78, 92, 106, 120, and 134 d of gestation. Fetal serum samples were collected at necropsy on d 134. In Exp. 2, pregnant ewe lambs (n = 36; BW 53.8 +/- 1.3 kg) were allotted randomly to treatments in a 2 x 2 factorial arrangement. Factors were nutrition (control, 100% of requirements vs. restricted nutrition, 60% of control) and dietary Se (adequate Se, 6 microg/kg of BW vs. high Se, 80 microg/kg of BW). Selenium treatments were initiated 21 d before breeding, and nutritional treatments were initiated on d 64 of gestation. Diets were 16% CP and 2.12 Mcal/kg of ME (DM basis). Blood samples were collected from the ewes at 62, 76, 90, 104, 118, 132, and 135 d of gestation. Fetal blood was collected at necropsy on d 135. In Exp.1, dietary Se source and concentration had no effect (P > 0.17) on maternal and fetal serum IGF-I, triiodothyronine (T(3)), or thyroxine (T(4)) concentrations. Selenium supplementation increased (P = 0.06) the T(4):T(3) ratio vs. controls. In Exp. 2, dietary Se had no impact (P > 0.33) on main effect means for maternal and fetal serum IGF-I, T(3), or T(4) concentrations from d 62 to 132; however, at d 135, high-Se ewes had lower (P = 0.01) serum T(4) concentrations than adequate-Se ewes. A nutrition by Se interaction (P = 0.06) was detected for the T(4):T(3) ratios; ewes fed restricted and adequate-Se diets had greater (P = 0.10) T(4):T(3) ratios compared with the other treatments. Nutrient-restricted ewes had lower (P < 0.05) serum IGF-I, T(3), and T(4) concentrations. Fetal serum IGF-I concentrations were lower (P = 0.01) in restricted-vs. control-fed ewes; however, fetal T(3) and T(4) concentrations were unaffected (P > 0.13) by dietary Se or maternal plane of nutrition. These data indicate that dietary Se may alter maternal T(4):T(3) ratios. In addition, nutrient restriction during gestation reduces maternal IGF-I, T(3), and T(4) and fetal IGF-I concentrations.


Journal of Animal Science | 2011

Effects of maternal selenium supply and plane of nutrition during gestation on passive transfer of immunity and health in neonatal lambs

C. J. Hammer; Jennifer F. Thorson; A. M. Meyer; Dale A. Redmer; Justin S. Luther; T. L. Neville; J. J. Reed; Lawrence P. Reynolds; J. S. Caton; K. A. Vonnahme

To investigate the influence of maternal Se supply and plane of nutrition on lamb morbidity, mortality, and passive transfer of IgG, pregnant ewe lambs were used in 2 experiments with 2 × 3 factorial treatment arrangements. Supplementation of Se began at breeding and was either adequate Se (ASe, 9.5 μg/kg of BW) or high Se (HSe, 81.8 μg/kg of BW) in Exp. 1 or ASe (11.5 µg/kg of BW) or HSe (77.0 µg/kg of BW) in Exp. 2. On d 50 or 40 of gestation for Exp. 1 or 2, respectively, ewes were assigned randomly to 1 of 3 nutritional planes: 60% (RES), 100% (control, CON), or 140% (HI) of NRC requirements. This resulted in the following treatments: ASe-RES, ASe-CON, ASe-HI, HSe-RES, HSe-CON, and HSe-HI. Upon parturition, lambs were separated from their dams and serum samples obtained. Lambs were fed artificial colostrum for the first 20 h and then placed on milk replacer and grain pellets until completion of the study (Exp. 1, 57 d; Exp. 2, 21 d). Twenty-four hours after parturition, lamb serum samples were collected for IgG analysis. All lambs were reared similarly and morbidity and mortality assessed. Main effects were considered significant when P ≤ 0.05. In Exp. 1, there was a Se × plane of nutrition interaction (P ≤ 0.01) for lamb morbidity from birth to weaning and for 24-h IgG concentration. Lambs from ASe-RES and HSe-HI ewes were treated more frequently (P < 0.01) for respiratory and gastrointestinal disease, and lambs from HSe-HI ewes had the smallest (P < 0.01) 24-h serum IgG concentration. In Exp. 1, lambs from HI ewes also had the greatest (P < 0.01) mortality rates from birth to weaning compared with lambs from CON and RES ewes. In Exp. 2, there was an effect (P < 0.01) of maternal plane of nutrition with lambs from RES ewes having increased 24-h IgG compared with lambs from CON and HI ewes. There was no effect of maternal Se supplementation on lamb 24-h IgG in Exp. 2; however, there was a Se × plane of nutrition interaction (P < 0.01) for morbidity. From birth to 21 d of age, lambs from ASe-CON ewes had fewer (P < 0.01) treatment days compared with lambs from any of the other treatment groups. There also tended (P = 0.08) to be an effect of maternal Se supplementation on lamb mortality with increased mortality observed in lambs from HSe ewes. Results from the studies show a restricted maternal plane of nutrition can increase lamb serum IgG concentration. Selenium results were not consistent between the 2 experiments and may be due to differences in maternal Se.

Collaboration


Dive into the J. J. Reed's collaboration.

Top Co-Authors

Avatar

J. S. Caton

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Lawrence P. Reynolds

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Dale A. Redmer

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

K. A. Vonnahme

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

J. B. Taylor

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

T. L. Neville

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

C. J. Hammer

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

A. M. Meyer

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

G. P. Lardy

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

M. L. Bauer

North Dakota State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge