J.J. Ruiz-Aguilar
University of Cádiz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J.J. Ruiz-Aguilar.
International Journal of Production Research | 2015
J.J. Ruiz-Aguilar; Ignacio J. Turias; María Jesús Jiménez-Come
The number of goods which passes through a border inspection post (BIP) may cause important congestion problems and delays in the port system, having an effect in the level of service of the port. Therefore, a prediction of the daily number of goods subject to inspection in BIPs seems to be a potential solution. This study proposes a two-stage procedure to better predict freight inspections. In the first stage, a Kohonen self-organising map (SOM) is employed to decompose the whole data into smaller regions which display similar statistical characteristics. In the second stage, support vector regression (SVR) is used to forecast the different homogeneous regions individually. The results obtained are compared with the single SVR technique. The experiment shows that SOM–SVR models outperform the single SVR models in the inspection forecasting. The application of the proposed technique may become a supporting tool for the prediction of the number of goods subject to inspection in BIPs of other international seaports or airports, and provides relevant information for decision-making and resource planning.
depcos-relcomex | 2014
José Antonio Moscoso López; J.J. Ruiz-Aguilar; Ignacio J. Turias; M. Mar Cerbán; María Jesús Jiménez-Come
The objective of this article is to predict volumes of Ro-Ro (Roll-on, Roll-off) freight in order to apply this prediction as a decision making tool in logistics planning and port organization. This tool can help to improve supply chain performance in a Ro-Ro terminal. Seasonal ARIMA (SARIMA) and Artificial Neural Networks (ANNs) were the forecasting methods used in this study. A resampling procedure was applied in order to find out the best model from a statistical point of view using multiple comparison methods. The results have been very promising (R=0.9157; d=0.9546; MSE=0.0195)
Journal of Chemometrics | 2014
María Jesús Jiménez-Come; Ignacio J. Turias; J.J. Ruiz-Aguilar; Francisco Trujillo
The breakdown potential is a crucial factor in the study of pitting corrosion resistance of stainless steel. This work aims to demonstrate the advantage of different chemometric techniques to estimate the breakdown potential of austenitic stainless steel. In order to predict pitting corrosion behaviour of stainless steel, a total of 60 samples of this alloy were subjected to electrochemical tests varying chloride ion concentration, pH and temperature. The experimental values of the breakdown potential, in addition to the tested environmental factors, were used to construct the predictive models based on support vector machines and artificial neural networks. A multiple‐comparison study based on statistic tests was applied to determine the optimal configuration for each technique. According to the results, support vector machines became a suitable and reliable technique to be applied in the modelling of the breakdown potential of austenitic stainless steels. This technique outperformed the models based on artificial neural networks and provided a useful tool to compare the pitting corrosion resistance of stainless steel in different environmental conditions without recourse to polarization tests. Therefore, this model presented a relevant meaning in science and engineering applications. Copyright
International Transactions in Operational Research | 2016
José Antonio Moscoso-López; Ignacio J. Turias; María Jesús Jiménez-Come; J.J. Ruiz-Aguilar; María del Mar Cerbán
The forecasting of the freight transportation, especially the short-term case, is an important topic in the daily supply chain management. Intermodal freight transportation is subject to multiple complex calendar effects arising in the port environment. The use of prediction methods provides information that may be helpful as a decision-making tool in the management and planning of operations processes in ports. This work addresses the forecasting problem on a daily basis by a novel two-stage scheme combination to offer reliable predictions of fresh freight weight on Ro-Ro (roll-on/roll-off) transport for 7 and 14 days ahead. The study compares daily forecasting with a weekly forecasting approach. The applies database preprocessing and Bayesian regularization neural networks (BRNN) in Stage I. In Stage II, an ensemble framework of the best BRNN models is used to enhance the Stage I forecasting. The results show that the models assessed are a promising tool to predict freight time series for Ro-Ro transport.
hybrid artificial intelligence systems | 2014
J.J. Ruiz-Aguilar; Ignacio J. Turias; María Jesús Jiménez-Come; M. Mar Cerbán
The constant growth of air and maritime traffic of goods creates the need of increasing the number, the reliability and the security of inspections at the European borders. In this context of high security, this work applies a two-step procedure based on the hybridization of SARIMA and Support Vector Regression to forecast the inspection volume at the Border Inspection Post of Port of Algeciras Bay. Three hybrid approaches are proposed and two prediction horizons are evaluated. Based on several performance indexes to assess the goodness-of-fit of the models, the hybrid approaches perform better than the SARIMA and SVR models used separately. Hence, the study shows that the hybrid methodology improves the single methods. The experimental results can provide relevant information for resource planning and may become a decision-making tool in the inspection process of other European BIPs.
soco-cisis-iceute | 2017
J.J. Ruiz-Aguilar; José Antonio Moscoso-López; Ignacio J. Turias; Javier González-Enrique
This study is focused on achieving a reliable prediction of the daily number of goods subject to inspection at Border Inspections Posts (BIPs). The final aim is to develop a prediction tool in order to aid the decision-making in the inspection process. The best artificial neural network (ANN) model was obtained by applying the Bayesian regularization approach. Furthermore, this study compares daily forecasting with a two-stage forecasting approach using a weekly aggregation-disaggregation procedure. The comparison was made using different performance indices. The BIP of the Port of Algeciras Bay was used as a case study. This approach may become a supporting tool for the prediction of the number of goods subject to inspection at other international inspection facilities.
Corrosion Reviews | 2016
María Jesús Jiménez-Come; Ignacio J. Turias; J.J. Ruiz-Aguilar
Abstract Motivated to reduce the costs incurred by corrosion in material science, this article presents a combined model based on artificial neural networks (ANNs) to predict pitting corrosion status of 316L austenitic stainless steel. This model offers the advantage of automatically determining the pitting corrosion status of the material. In this work, the pitting corrosion status was predicted, with the environmental conditions considered, in addition to the values of the breakdown potential estimated by the model previously, but without having to use polarization tests. The generalization ability of the model was verified by the evaluation using the experimental data obtained from the European project called “Avoiding Catastrophic Corrosion Failure of Stainless Steel”. Receiver operating characteristic space, in addition to area under the curve (AUC) values, was presented to measure the prediction performance of the model. Based on the results (0.994 for AUC, 0.980 for sensitivity, and 0.956 for specificity), it can be concluded that ANNs become an efficient tool to predict pitting corrosion status of austenitic stainless steel automatically using this two-stage procedure approach.
Transportation Research Part E-logistics and Transportation Review | 2014
J.J. Ruiz-Aguilar; Ignacio J. Turias; María Jesús Jiménez-Come
Transportation Research Part C-emerging Technologies | 2015
J.J. Ruiz-Aguilar; Ignacio J. Turias; María Jesús Jiménez-Come
Dyna | 2016
J.J. Ruiz-Aguilar; Ignacio J. Turias; José Antonio Moscoso-López; María Jesús Jiménez-Come; M. Mar Cerbán