Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Janczak is active.

Publication


Featured researches published by J. Janczak.


The Astrophysical Journal | 2009

MICROLENSING EVENT MOA-2007-BLG-400: EXHUMING THE BURIED SIGNATURE OF A COOL, JOVIAN-MASS PLANET

Subo Dong; I. A. Bond; A. Gould; S. Kozłowski; N. Miyake; B. S. Gaudi; D. P. Bennett; F. Abe; A. C. Gilmore; A. Fukui; K. Furusawa; J. B. Hearnshaw; Y. Itow; K. Kamiya; P. M. Kilmartin; A. Korpela; W. Lin; C. H. Ling; K. Masuda; Y. Matsubara; Y. Muraki; M. Nagaya; K. Ohnishi; Teppei Okumura; Y. C. Perrott; N. J. Rattenbury; To. Saito; T. Sako; Shuji Sato; L. Skuljan

We report the detection of the cool, Jovian-mass planet MOA-2007-BLG-400Lb. The planet was detected in a high-magnification microlensing event (with peak magnification A max = 628) in which the primary lens transited the source, resulting in a dramatic smoothing of the peak of the event. The angular extent of the region of perturbation due to the planet is significantly smaller than the angular size of the source, and as a result the planetary signature is also smoothed out by the finite source size. Thus, the deviation from a single-lens fit is broad and relatively weak (approximately few percent). Nevertheless, we demonstrate that the planetary nature of the deviation can be unambiguously ascertained from the gross features of the residuals, and detailed analysis yields a fairly precise planet/star mass ratio of , in accord with the large significance () of the detection. The planet/star projected separation is subject to a strong close/wide degeneracy, leading to two indistinguishable solutions that differ in separation by a factor of ~8.5. Upper limits on flux from the lens constrain its mass to be M < 0.75 M ? (assuming that it is a main-sequence star). A Bayesian analysis that includes all available observational constraints indicates a primary in the Galactic bulge with a mass of ~0.2-0.5 M ? and thus a planet mass of ~0.5-1.3 M Jup. The separation and equilibrium temperature are ~5.3-9.7 AU (~0.6-1.1 AU) and ~34 K (~103 K) for the wide (close) solution. If the primary is a main-sequence star, follow-up observations would enable the detection of its light and so a measurement of its mass and distance.


Archive | 2012

Microlensing binaries with brown dwarf companions

I.-G. Shin; C. Han; A. Gould; A. Udalski; T. Sumi; M. Dominik; J. P. Beaulieu; Y. Tsapras; V. Bozza; M. K. Szymański; M. Kubiak; I. Soszyński; G. Pietrzyński; R. Poleski; K. Ulaczyk; P. Pietrukowicz; S. Kozłowski; J. Skowron; Ł. Wyrzykowski; F. Abe; D. P. Bennett; I. A. Bond; C. S. Botzler; M. Freeman; A. Fukui; K. Furusawa; F. Hayashi; J. B. Hearnshaw; S. Hosaka; Y. Itow

Collaboration


Dive into the J. Janczak's collaboration.

Top Co-Authors

Avatar

A. Gould

Korea Astronomy and Space Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. P. Bennett

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Han

Chungbuk National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge