Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Jason Collier is active.

Publication


Featured researches published by J. Jason Collier.


PLOS ONE | 2011

Pancreatic β-cell death in response to pro-inflammatory cytokines is distinct from genuine apoptosis.

J. Jason Collier; Susan J. Burke; Mary E. Eisenhauer; Danhong Lu; Renee C. Sapp; Carlie J. Frydman; Shawn R. Campagna

A reduction in functional β-cell mass leads to both major forms of diabetes; pro-inflammatory cytokines, such as interleukin-1beta (IL-1β) and gamma-interferon (γ-IFN), activate signaling pathways that direct pancreatic β-cell death and dysfunction. However, the molecular mechanism of β-cell death in this context is not well understood. In this report, we tested the hypothesis that individual cellular death pathways display characteristic phenotypes that allow them to be distinguished by the precise biochemical and metabolic responses that occur during stimulus-specific initiation. Using 832/13 and INS-1E rat insulinoma cells and isolated rat islets, we provide evidence that apoptosis is unlikely to be the primary pathway underlying β-cell death in response to IL-1β+γ-IFN. This conclusion was reached via the experimental results of several different interdisciplinary strategies, which included: 1) tandem mass spectrometry to delineate the metabolic differences between IL-1β+γ-IFN exposure versus apoptotic induction by camptothecin and 2) pharmacological and molecular interference with either NF-κB activity or apoptosome formation. These approaches provided clear distinctions in cell death pathways initiated by pro-inflammatory cytokines and bona fide inducers of apoptosis. Collectively, the results reported herein demonstrate that pancreatic β-cells undergo apoptosis in response to camptothecin or staurosporine, but not pro-inflammatory cytokines.


American Journal of Physiology-endocrinology and Metabolism | 2014

NF-κB and STAT1 control CXCL1 and CXCL2 gene transcription

Susan J. Burke; Danhong Lu; Tim E. Sparer; Thomas Masi; Matthew R. Goff; Michael D. Karlstad; J. Jason Collier

Diabetes mellitus results from immune cell invasion into pancreatic islets of Langerhans, eventually leading to selective destruction of the insulin-producing β-cells. How this process is initiated is not well understood. In this study, we investigated the regulation of the CXCL1 and CXCL2 genes, which encode proteins that promote migration of CXCR2(+) cells, such as neutrophils, toward secreting tissue. Herein, we found that IL-1β markedly enhanced the expression of the CXCL1 and CXCL2 genes in rat islets and β-cell lines, which resulted in increased secretion of each of these proteins. CXCL1 and CXCL2 also stimulated the expression of specific integrin proteins on the surface of human neutrophils. Mutation of a consensus NF-κB genomic sequence present in both gene promoters reduced the ability of IL-1β to promote transcription. In addition, IL-1β induced binding of the p65 and p50 subunits of NF-κB to these consensus κB regulatory elements as well as to additional κB sites located near the core promoter regions of each gene. Additionally, serine-phosphorylated STAT1 bound to the promoters of the CXCL1 and CXCL2 genes. We further found that IL-1β induced specific posttranslational modifications to histone H3 in a time frame congruent with transcription factor binding and transcript accumulation. We conclude that IL-1β-mediated regulation of the CXCL1 and CXCL2 genes in pancreatic β-cells requires stimulus-induced changes in histone chemical modifications, recruitment of the NF-κB and STAT1 transcription factors to genomic regulatory sequences within the proximal gene promoters, and increases in phosphorylated forms of RNA polymerase II.


Journal of Immunology | 2013

Synergistic Expression of the CXCL10 Gene in Response to IL-1β and IFN-γ Involves NF-κB, Phosphorylation of STAT1 at Tyr701, and Acetylation of Histones H3 and H4

Susan J. Burke; Matthew R. Goff; Danhong Lu; David Proud; Michael D. Karlstad; J. Jason Collier

The CXCL10 gene encodes a peptide that chemoattracts a variety of leukocytes associated with type 1 and type 2 diabetes. The present study was undertaken to determine the molecular mechanisms required for expression of the CXCL10 gene in response to IL-1β and IFN-γ using rat islets and β cell lines. IL-1β induced the expression of the CXCL10 gene and promoter activity, whereas the combination of IL-1β plus IFN-γ was synergistic. Small interfering RNA–mediated suppression of NF-κB p65 markedly inhibited the ability of cytokines to induce the expression of the CXCL10 gene, whereas targeting STAT1 only diminished the synergy provided by IFN-γ. Furthermore, we found that a JAK1 inhibitor dose dependently reduced IFN-γ–controlled CXCL10 gene expression and promoter activity, concomitant with a decrease in STAT1 phosphorylation at Tyr701. We further discovered that, although the Tyr701 phosphorylation site is inducible (within 15 min of IFN-γ exposure), the Ser727 site within STAT1 is constitutively phosphorylated. Thus, we generated single-mutant STAT1 Y701F and double-mutant STAT1 Y701F/S727A adenoviruses. Using these recombinant adenoviruses, we determined that overexpression of either the single- or double-mutant STAT1 decreased the IFN-γ–mediated potentiation of CXCL10 gene expression, promoter activity, and secretion of protein. Moreover, the Ser727 phosphorylation was neither contingent on a functional Y701 site in β cells nor was it required for cytokine-mediated expression of the CXCL10 gene. We conclude that the synergism of IL-1β and IFN-γ to induce expression of the CXCL10 gene requires NF-κB, STAT1 phosphorylated at Tyr701, recruitment of coactivators, and acetylation of histones H3 and H4.


PLOS ONE | 2012

Regulation of the CCL2 Gene in Pancreatic β-Cells by IL-1β and Glucocorticoids: Role of MKP-1

Susan J. Burke; Matthew R. Goff; Barrett L. Updegraff; Danhong Lu; Patricia L. Brown; Steven C. Minkin; John Biggerstaff; Ling Zhao; Michael D. Karlstad; J. Jason Collier

Release of pro-inflammatory cytokines from both resident and invading leukocytes within the pancreatic islets impacts the development of Type 1 diabetes mellitus. Synthesis and secretion of the chemokine CCL2 from pancreatic β-cells in response to pro-inflammatory signaling pathways influences immune cell recruitment into the pancreatic islets. Therefore, we investigated the positive and negative regulatory components controlling expression of the CCL2 gene using isolated rat islets and INS-1-derived β-cell lines. We discovered that activation of the CCL2 gene by IL-1β required the p65 subunit of NF-κB and was dependent on genomic response elements located in the −3.6 kb region of the proximal gene promoter. CCL2 gene transcription in response to IL-1β was blocked by pharmacological inhibition of the IKKβ and p38 MAPK pathways. The IL-1β-mediated increase in CCL2 secretion was also impaired by p38 MAPK inhibition and by glucocorticoids. Moreover, multiple synthetic glucocorticoids inhibited the IL-1β-stimulated induction of the CCL2 gene. Induction of the MAP Kinase Phosphatase-1 (MKP-1) gene by glucocorticoids or by adenoviral-mediated overexpression decreased p38 MAPK phosphorylation, which diminished CCL2 gene expression, promoter activity, and release of CCL2 protein. We conclude that glucocorticoid-mediated repression of IL-1β-induced CCL2 gene transcription and protein secretion occurs in part through the upregulation of the MKP-1 gene and subsequent deactivation of the p38 MAPK. Furthermore, the anti-inflammatory actions observed with MKP-1 overexpression were obtained without suppressing glucose-stimulated insulin secretion. Thus, MKP-1 is a possible target for anti-inflammatory therapeutic intervention with preservation of β-cell function.


Cellular Immunology | 2011

The gene encoding cyclooxygenase-2 is regulated by IL-1β and prostaglandins in 832/13 rat insulinoma cells.

Susan J. Burke; J. Jason Collier

The pro-inflammatory cytokine IL-1β leads to losses in functional β-cell mass in part by inducing the expression of genes that produce soluble mediators of inflammation, such as cyclooxygenase-2 (COX2). In the current study, we sought to understand what factors control the COX2 gene in response to IL-1β and how prostaglandins downstream of COX2 impact pro-inflammatory gene transcription in pancreatic β-cells. We analyzed COX2 gene expression in response to different maneuvers impacting NF-κB proteins. Also, we report alterations in the expression of COX2, EP-3 and EP-4 receptor genes by PGD(2) and PGE(2). Moreover, we examined whether PGD(2) and PGE(2) regulated NF-κB and interferon-gamma activated sequence (GAS) reporter gene activity. IL-1β-mediated induction of the COX2 gene requires the p65 and p50 subunits of NF-κB. In addition, PGD(2) and PGE(2) coordinately alter COX2 and EP receptor gene expression patterns and potentiate the cytokine-mediated transcriptional activity of promoters containing NF-κB or GAS response elements.


Obesity | 2012

The effects of NOD activation on adipocyte differentiation.

Jaanki S. Purohit; Pan Hu; Susan J. Burke; J. Jason Collier; Jiangang Chen; Ling Zhao

Obesity is associated with chronic inflammation. Toll‐like receptors (TLR) and NOD‐like receptors (NLR) are two families of pattern recognition receptors that play important roles in immune response and inflammation in adipocytes. It has been reported that TLR4 and TLR2 activation induce proinflammatory changes that impair adipocyte differentiation. However, the effects of activation of NOD1 and NOD2, the two prominent members of NLR, on adipocyte differentiation have not been studied.


Molecular Endocrinology | 2013

Regulation of iNOS Gene Transcription by IL-1β and IFN-γ Requires a Coactivator Exchange Mechanism

Susan J. Burke; Barrett L. Updegraff; Rachel M. Bellich; Matthew R. Goff; Danhong Lu; Steven C. Minkin; Michael D. Karlstad; J. Jason Collier

The proinflammatory cytokines IL-1β and IFN-γ decrease functional islet β-cell mass in part through the increased expression of specific genes, such as inducible nitric oxide synthase (iNOS). Dysregulated iNOS protein accumulation leads to overproduction of nitric oxide, which induces DNA damage, impairs β-cell function, and ultimately diminishes cellular viability. However, the transcriptional mechanisms underlying cytokine-mediated expression of the iNOS gene are not completely understood. Herein, we demonstrated that individual mutations within the proximal and distal nuclear factor-κB sites impaired cytokine-mediated transcriptional activation. Surprisingly, mutating IFN-γ-activated site (GAS) elements in the iNOS gene promoter, which are classically responsive to IFN-γ, modulated transcriptional sensitivity to IL-1β. Transcriptional sensitivity to IL-1β was increased by generation of a consensus GAS element and decreased correspondingly with 1 or 2 nucleotide divergences from the consensus sequence. The nuclear factor-κB subunits p65 and p50 bound to the κB response elements in an IL-1β-dependent manner. IL-1β also promoted binding of serine-phosphorylated signal transducer and activator of transcription-1 (STAT1) (Ser727) but not tyrosine-phosphorylated STAT1 (Tyr701) to GAS elements. However, phosphorylation at Tyr701 was required for IFN-γ to potentiate the IL-1β response. Furthermore, coactivator p300 and coactivator arginine methyltransferase were recruited to the iNOS gene promoter with concomitant displacement of the coactivator CREB-binding protein in cells exposed to IL-1β. Moreover, these coordinated changes in factor recruitment were associated with alterations in acetylation, methylation, and phosphorylation of histone proteins. We conclude that p65 and STAT1 cooperate to control iNOS gene transcription in response to proinflammatory cytokines by a coactivator exchange mechanism. This increase in transcription is also associated with signal-specific chromatin remodeling that leads to RNA polymerase II recruitment and phosphorylation.


Biochimica et Biophysica Acta | 2015

CCL20 is elevated during obesity and differentially regulated by NF-κB subunits in pancreatic β-cells

Susan J. Burke; Michael D. Karlstad; Kellie M. Regal; Tim E. Sparer; Danhong Lu; Carrie M. Elks; Ryan W. Grant; Jacqueline M. Stephens; David H. Burk; J. Jason Collier

Enhanced leukocytic infiltration into pancreatic islets contributes to inflammation-based diminutions in functional β-cell mass. Insulitis (aka islet inflammation), which can be present in both T1DM and T2DM, is one factor influencing pancreatic β-cell death and dysfunction. IL-1β, an inflammatory mediator in both T1DM and T2DM, acutely (within 1h) induced expression of the CCL20 gene in rat and human islets and clonal β-cell lines. Transcriptional induction of CCL20 required the p65 subunit of NF-κB to replace the p50 subunit at two functional κB sites within the CCL20 proximal gene promoter. The NF-κB p50 subunit prevents CCL20 gene expression during unstimulated conditions and overexpression of p50 reduces CCL20, but enhances cyclooxygenase-2 (COX-2), transcript accumulation after exposure to IL-1β. We also identified differential recruitment of specific co-activator molecules to the CCL20 gene promoter, when compared with the CCL2 and COX2 genes, revealing distinct transcriptional requirements for individual NF-κB responsive genes. Moreover, IL-1β, TNF-α and IFN-γ individually increased the expression of CCR6, the receptor for CCL20, on the surface of human neutrophils. We further found that the chemokine CCL20 is elevated in serum from both genetically obese db/db mice and in C57BL6/J mice fed a high-fat diet. Taken together, these results are consistent with a possible activation of the CCL20-CCR6 axis in diseases with inflammatory components. Thus, interfering with this signaling pathway, either at the level of NF-κB-mediated chemokine production, or downstream receptor activation, could be a potential therapeutic target to offset inflammation-associated tissue dysfunction in obesity and diabetes.


Nutrition and Cancer | 2011

Zyflamend reduces the expression of androgen receptor in a model of castrate-resistant prostate cancer.

E-Chu Huang; Guoxun Chen; Seung Joon Baek; Michael F. McEntee; J. Jason Collier; Steven C. Minkin; John Biggerstaff; Jay Whelan

Prostate cancer is the most commonly diagnosed solid malignancy, and tumor cells eventually transform to castrate resistance through multiple pathways including activation of the androgen receptor via insulin-like growth factor receptor (IGF-1R) signaling involving phospho-AKT (pAKT). In this study, a mixture of herbal extracts, Zyflamend®, was used as a treatment in a model of castrate-resistant prostate cancer using CWR22Rv1 cells. Zyflamend reduced androgen receptor and IGF-1R expression along with a reduction of IGF-1-mediated proliferation of CWR22Rv1 cells. IGF-1 induced downstream AKT phosphorylation; however, the induction of pAKT was not associated with androgen receptor expression. Further, constitutively active form of AKT had no effect on nuclear expression of androgen receptor, indicating that upregulation of pAKT did not promote androgen receptor expression or nuclear translocation in castrate-resistant CWR22Rv1 cells. Conversely, Zyflamend reduced androgen receptor expression following IGF-1 stimulation and in cells overexpressing pAKT. These results demonstrated that Zyflamend inhibited IGF-1-stimulated cell growth, IGF-1R expression, and androgen receptor expression and its nuclear localization, but these effects were not dependent upon phosphatidylinositol 3-kinase/pAKT signaling. In conclusion, Zyflamend decreased cell proliferation and inhibited IGF-1R and androgen receptor expression in a phosphatidylinositol 3-kinase/pAKT independent manner.


Nutrition Research | 2015

Dietary polyherbal supplementation decreases CD3+ cell infiltration into pancreatic islets and prevents hyperglycemia in nonobese diabetic mice

Susan J. Burke; Michael D. Karlstad; Caroline P. Conley; Danielle Reel; Jay Whelan; J. Jason Collier

Type 1 diabetes mellitus results from autoimmune-mediated destruction of pancreatic islet β-cells, a process associated with inflammatory signals. We hypothesized that dietary supplementation with botanicals known to contain anti-inflammatory properties would prevent losses in functional β-cell mass in nonobese diabetic (NOD) mice, a rodent model of autoimmune-mediated islet inflammation that spontaneously develops diabetes. Female NOD mice, a model of spontaneous autoimmune diabetes, were fed a diet supplemented with herbal extracts (1.916 g total botanical extracts per 1 kg of diet) over a 12-week period. The mice consumed isocaloric matched diets without (controls) and with polyherbal supplementation (PHS) ad libitum starting at a prediabetic stage (age 6 weeks) for 12 weeks. Control mice developed hyperglycemia (>180 mg/dL) within 16 weeks (n = 9). By contrast, mice receiving the PHS diet did not develop hyperglycemia by 18 weeks (n = 8). Insulin-positive cell mass within pancreatic islets was 31.9% greater in PHS mice relative to controls. We also detected a 26% decrease in CD3(+) lymphocytic infiltration in PHS mice relative to mice consuming a control diet. In vitro assays revealed reduced β-cell expression of the chemokines CCL2 and CXCL10 after overnight PHS addition to the culture media. We conclude that dietary PHS delays initiation of autoimmune-mediated β-cell destruction and subsequent onset of diabetes mellitus by diminishing islet inflammatory responses.

Collaboration


Dive into the J. Jason Collier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael D. Karlstad

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Jay Whelan

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling Zhao

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E-Chu Huang

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar

Guoxun Chen

University of Tennessee

View shared research outputs
Researchain Logo
Decentralizing Knowledge