Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Joseph Melenhorst is active.

Publication


Featured researches published by J. Joseph Melenhorst.


The New England Journal of Medicine | 2014

Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia

Shannon L. Maude; Noelle V. Frey; Pamela A. Shaw; Richard Aplenc; David M. Barrett; Nancy Bunin; Anne Chew; Vanessa Gonzalez; Zhaohui Zheng; Simon F. Lacey; Yolanda D. Mahnke; J. Joseph Melenhorst; Susan R. Rheingold; Angela Shen; David T. Teachey; Bruce L. Levine; Carl H. June; David L. Porter; Stephan A. Grupp

BACKGROUND Relapsed acute lymphoblastic leukemia (ALL) is difficult to treat despite the availability of aggressive therapies. Chimeric antigen receptor-modified T cells targeting CD19 may overcome many limitations of conventional therapies and induce remission in patients with refractory disease. METHODS We infused autologous T cells transduced with a CD19-directed chimeric antigen receptor (CTL019) lentiviral vector in patients with relapsed or refractory ALL at doses of 0.76×10(6) to 20.6×10(6) CTL019 cells per kilogram of body weight. Patients were monitored for a response, toxic effects, and the expansion and persistence of circulating CTL019 T cells. RESULTS A total of 30 children and adults received CTL019. Complete remission was achieved in 27 patients (90%), including 2 patients with blinatumomab-refractory disease and 15 who had undergone stem-cell transplantation. CTL019 cells proliferated in vivo and were detectable in the blood, bone marrow, and cerebrospinal fluid of patients who had a response. Sustained remission was achieved with a 6-month event-free survival rate of 67% (95% confidence interval [CI], 51 to 88) and an overall survival rate of 78% (95% CI, 65 to 95). At 6 months, the probability that a patient would have persistence of CTL019 was 68% (95% CI, 50 to 92) and the probability that a patient would have relapse-free B-cell aplasia was 73% (95% CI, 57 to 94). All the patients had the cytokine-release syndrome. Severe cytokine-release syndrome, which developed in 27% of the patients, was associated with a higher disease burden before infusion and was effectively treated with the anti-interleukin-6 receptor antibody tocilizumab. CONCLUSIONS Chimeric antigen receptor-modified T-cell therapy against CD19 was effective in treating relapsed and refractory ALL. CTL019 was associated with a high remission rate, even among patients for whom stem-cell transplantation had failed, and durable remissions up to 24 months were observed. (Funded by Novartis and others; CART19 ClinicalTrials.gov numbers, NCT01626495 and NCT01029366.).


Science Translational Medicine | 2015

Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia

David L. Porter; Wei-Ting Hwang; Noelle V. Frey; Simon F. Lacey; Pamela A. Shaw; Alison W. Loren; Adam Bagg; Katherine T. Marcucci; Angela Shen; Vanessa Gonzalez; David E Ambrose; Stephan A. Grupp; Anne Chew; Zhaohui Zheng; Michael C. Milone; Bruce L. Levine; J. Joseph Melenhorst; Carl H. June

CAR T cells persist and sustain remissions in advanced chronic lymphocytic leukemia. CAR T cells for the long haul Immunotherapy is one of the most promising avenues of cancer therapy, with the potential to induce sustained remissions in patients with refractory disease. Studies with chimeric antigen receptor (CAR)–modified T cells have paved the way in patients with relapsed and refractory chronic lymphocytic leukemia. Porter et al. now report the mature results from their initial CAR T cell trial. CAR T cell persistence correlated with clinical responses, and these cells were functional up to 4 years after treatment. No patient who achieved complete remission relapsed, and no minimal residual disease was detected, suggesting that in a subset of patients, CAR T cells may drive disease eradication. Patients with multiply relapsed or refractory chronic lymphocytic leukemia (CLL) have a poor prognosis. Chimeric antigen receptor (CAR)–modified T cells targeting CD19 have the potential to improve on the low complete response rates with conventional therapies by inducing sustained remissions in patients with refractory B cell malignancies. We previously reported preliminary results on three patients with refractory CLL. We report the mature results from our initial trial using CAR-modified T cells to treat 14 patients with relapsed and refractory CLL. Autologous T cells transduced with a CD19-directed CAR (CTL019) lentiviral vector were infused into patients with relapsed/refractory CLL at doses of 0.14 × 108 to 11 × 108 CTL019 cells (median, 1.6 × 108 cells). Patients were monitored for toxicity, response, expansion, and persistence of circulating CTL019 T cells. The overall response rate in these heavily pretreated CLL patients was 8 of 14 (57%), with 4 complete remissions (CR) and 4 partial remissions (PR). The in vivo expansion of the CAR T cells correlated with clinical responses, and the CAR T cells persisted and remained functional beyond 4 years in the first two patients achieving CR. No patient in CR has relapsed. All responding patients developed B cell aplasia and experienced cytokine release syndrome, coincident with T cell proliferation. Minimal residual disease was not detectable in patients who achieved CR, suggesting that disease eradication may be possible in some patients with advanced CLL.


The New England Journal of Medicine | 2015

Chimeric Antigen Receptor T Cells against CD19 for Multiple Myeloma

Alfred L. Garfall; Marcela V. Maus; Wei-Ting Hwang; Simon F. Lacey; Yolanda D. Mahnke; J. Joseph Melenhorst; Zhaohui Zheng; Dan T. Vogl; Adam D. Cohen; Brendan M. Weiss; Karen Dengel; Naseem Kerr; Adam Bagg; Bruce L. Levine; Carl H. June; Edward A. Stadtmauer

A patient with refractory multiple myeloma received an infusion of CTL019 cells, a cellular therapy consisting of autologous T cells transduced with an anti-CD19 chimeric antigen receptor, after myeloablative chemotherapy (melphalan, 140 mg per square meter of body-surface area) and autologous stem-cell transplantation. Four years earlier, autologous transplantation with a higher melphalan dose (200 mg per square meter) had induced only a partial, transient response. Autologous transplantation followed by treatment with CTL019 cells led to a complete response with no evidence of progression and no measurable serum or urine monoclonal protein at the most recent evaluation, 12 months after treatment. This response was achieved despite the absence of CD19 expression in 99.95% of the patients neoplastic plasma cells. (Funded by Novartis and others; ClinicalTrials.gov number, NCT02135406.).


Cancer Discovery | 2015

Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy

Elena Sotillo; David M. Barrett; Kathryn L. Black; Asen Bagashev; Derek A. Oldridge; Glendon Wu; Robyn T. Sussman; Claudia Lanauze; Marco Ruella; Matthew R. Gazzara; Nicole M. Martinez; Colleen T. Harrington; Elaine Y. Chung; Jessica Perazzelli; Ted J. Hofmann; Shannon L. Maude; Pichai Raman; Alejandro Barrera; Saar Gill; Simon F. Lacey; J. Joseph Melenhorst; David Allman; Elad Jacoby; Terry J. Fry; Crystal L. Mackall; Yoseph Barash; Kristen W. Lynch; John M. Maris; Stephan A. Grupp; Andrei Thomas-Tikhonenko

UNLABELLED The CD19 antigen, expressed on most B-cell acute lymphoblastic leukemias (B-ALL), can be targeted with chimeric antigen receptor-armed T cells (CART-19), but relapses with epitope loss occur in 10% to 20% of pediatric responders. We detected hemizygous deletions spanning the CD19 locus and de novo frameshift and missense mutations in exon 2 of CD19 in some relapse samples. However, we also discovered alternatively spliced CD19 mRNA species, including one lacking exon 2. Pull-down/siRNA experiments identified SRSF3 as a splicing factor involved in exon 2 retention, and its levels were lower in relapsed B-ALL. Using genome editing, we demonstrated that exon 2 skipping bypasses exon 2 mutations in B-ALL cells and allows expression of the N-terminally truncated CD19 variant, which fails to trigger killing by CART-19 but partly rescues defects associated with CD19 loss. Thus, this mechanism of resistance is based on a combination of deleterious mutations and ensuing selection for alternatively spliced RNA isoforms. SIGNIFICANCE CART-19 yield 70% response rates in patients with B-ALL, but also produce escape variants. We discovered that the underlying mechanism is the selection for preexisting alternatively spliced CD19 isoforms with the compromised CART-19 epitope. This mechanism suggests a possibility of targeting alternative CD19 ectodomains, which could improve survival of patients with B-cell neoplasms.


Journal of Immunological Methods | 2009

Protein kinase inhibitors substantially improve the physical detection of T-cells with peptide-MHC tetramers.

Anna Lissina; Kristin Ladell; Ania Skowera; Mathew Clement; Ruth Seggewiss; Hugo A. van den Berg; Emma Gostick; Kathleen Gallagher; Emma Jones; J. Joseph Melenhorst; Andrew James Godkin; Mark Peakman; David A. Price; Andrew K. Sewell; Linda Wooldridge

Flow cytometry with fluorochrome-conjugated peptide-major histocompatibility complex (pMHC) tetramers has transformed the study of antigen-specific T-cells by enabling their visualization, enumeration, phenotypic characterization and isolation from ex vivo samples. Here, we demonstrate that the reversible protein kinase inhibitor (PKI) dasatinib improves the staining intensity of human (CD8+ and CD4+) and murine T-cells without concomitant increases in background staining. Dasatinib enhances the capture of cognate pMHC tetramers from solution and produces higher intensity staining at lower pMHC concentrations. Furthermore, dasatinib reduces pMHC tetramer-induced cell death and substantially lowers the T-cell receptor (TCR)/pMHC interaction affinity threshold required for cell staining. Accordingly, dasatinib permits the identification of T-cells with very low affinity TCR/pMHC interactions, such as those that typically predominate in tumour-specific responses and autoimmune conditions that are not amenable to detection by current technology.


Cancer Discovery | 2016

Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T-cell Therapy for Acute Lymphoblastic Leukemia.

David T. Teachey; Simon F. Lacey; Pamela A. Shaw; J. Joseph Melenhorst; Shannon L. Maude; Noelle V. Frey; Edward Pequignot; Vanessa Gonzalez; Fang Chen; Jeffrey Finklestein; David M. Barrett; Scott L. Weiss; Julie C. Fitzgerald; Robert A. Berg; Richard Aplenc; Colleen Callahan; Susan R. Rheingold; Zhaohui Zheng; Stefan Rose-John; Jason C. White; Farzana Nazimuddin; Gerald Wertheim; Bruce L. Levine; Carl H. June; David L. Porter; Stephan A. Grupp

UNLABELLED Chimeric antigen receptor (CAR)-modified T cells with anti-CD19 specificity are a highly effective novel immune therapy for relapsed/refractory acute lymphoblastic leukemia. Cytokine release syndrome (CRS) is the most significant and life-threatening toxicity. To improve understanding of CRS, we measured cytokines and clinical biomarkers in 51 CTL019-treated patients. Peak levels of 24 cytokines, including IFNγ, IL6, sgp130, and sIL6R, in the first month after infusion were highly associated with severe CRS. Using regression modeling, we could accurately predict which patients would develop severe CRS with a signature composed of three cytokines. Results were validated in an independent cohort. Changes in serum biochemical markers, including C-reactive protein and ferritin, were associated with CRS but failed to predict development of severe CRS. These comprehensive profiling data provide novel insights into CRS biology and, importantly, represent the first data that can accurately predict which patients have a high probability of becoming critically ill. SIGNIFICANCE CRS is the most common severe toxicity seen after CAR T-cell treatment. We developed models that can accurately predict which patients are likely to develop severe CRS before they become critically ill, which improves understanding of CRS biology and may guide future cytokine-directed therapy. Cancer Discov; 6(6); 664-79. ©2016 AACR.See related commentary by Rouce and Heslop, p. 579This article is highlighted in the In This Issue feature, p. 561.


Blood | 2010

Allogeneic virus-specific T cells with HLA alloreactivity do not produce GVHD in human subjects

J. Joseph Melenhorst; Ann M. Leen; Catherine M. Bollard; Máire F. Quigley; David A. Price; Cliona M. Rooney; Malcolm K. Brenner; A. John Barrett; Helen E. Heslop

Adoptive transfer of viral antigen-specific memory T cells can reconstitute antiviral immunity, but in a recent report a majority of virus-specific cytotoxic T-lymphocyte (CTL) lines showed in vitro cross-reactivity against allo-human leukocyte antigen (HLA) molecules as measured by interferon-γ secretion. We therefore reviewed our clinical experience with adoptive transfer of allogeneic hematopoietic stem cell transplantation donor-derived virus-specific CTLs in 153 recipients, including 73 instances where there was an HLA mismatch. There was no de novo acute graft-versus-host disease after infusion, and incidence of graft-versus-host disease reactivation was low and not significantly different in recipients of matched or mismatched CTL. However, we found that virus-specific T cell lines recognized up to 10% of a panel of 44 HLA disparate targets, indicating that virus-specific T cells can have cross-reactivity with HLA-mismatched targets in vitro. These data indicate that the adoptive transfer of partially HLA-mismatched virus-specific CTL is safe despite in vitro recognition of recipient HLA molecules.


Journal of Immunology | 2009

Differential Association of Programmed Death-1 and CD57 with Ex Vivo Survival of CD8+ T Cells in HIV Infection

Constantinos Petrovas; Benjamin Chaon; David R. Ambrozak; David A. Price; J. Joseph Melenhorst; Brenna J. Hill; Christof Geldmacher; Joseph P. Casazza; Pratip K. Chattopadhyay; Mario Roederer; Yvonne M. Mueller; Jeffrey M. Jacobson; Viraj Kulkarni; Barbara K. Felber; George N. Pavlakis; Peter D. Katsikis; Richard A. Koup

Recent studies have revealed the critical role of programmed death-1 (PD-1) in exhaustion of HIV- and SIV-specific CD8+ T cells. In this study, we show that high expression of PD-1 correlates with increased ex vivo spontaneous and CD95/Fas-induced apoptosis, particularly in the “effector-memory” CD8+ T cell population from HIV+ donors. High expression of PD-1 was linked to a proapoptotic phenotype characterized by low expression of Bcl-2 and IL7-Rα, high expression of CD95/Fas and high mitochondrial mass. Expression of PD-1 and CD57 was differentially associated with the maturation status of CD8+ T cells in HIV infection. CD57 was linked to higher apoptosis resistance, with cells expressing a PD-1LCD57H phenotype exhibiting lower levels of cell death. The majority of HIV-specific CD8+ T cells were found to express a PD-1HCD57L or PD-1HCD57H phenotype. No correlation was found between PD-1 expression and ex vivo polyfunctionality of either HIV- or CMV-specific CD8+ T cells. Contrary to CD57, high expression of PD-1 was characterized by translocation of PD-1 into the area of CD95/Fas-capping, an early necessary step of CD95/Fas-induced apoptosis. Thus, our data further support the role of PD-1 as a preapoptotic factor for CD8+ T cells in HIV infection.


Science Translational Medicine | 2017

A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma

Donald M. O’Rourke; MacLean P. Nasrallah; Arati Desai; J. Joseph Melenhorst; Keith Mansfield; Jennifer J.D. Morrissette; Maria Martinez-Lage; Steven Brem; Eileen Maloney; Angela Shen; Randi Isaacs; Suyash Mohan; Gabriela Plesa; Simon F. Lacey; Jean-Marc Navenot; Zhaohui Zheng; Bruce L. Levine; Hideho Okada; Carl H. June; Jennifer Brogdon; Marcela V. Maus

A trial of autologous T cells redirected to a specific mutation in glioblastoma patients illustrates mechanisms of resistance. Speeding toward CAR T cell therapy for glioblastoma Chimeric antigen receptor (CAR) T cells have been successfully implemented for treating leukemia and are now being investigated for solid tumors. O’Rourke et al. conducted a phase 1 safety study of autologous CAR T cells targeted to EGFR variant III in glioblastoma patients. Treatment seemed to be well tolerated, which is critical because other CAR T cell products have been implicated in devastating central nervous system complications. Of the 10 patients enrolled, 7 had surgical intervention, allowing for some analysis of the tumors and T cells in patients’ brains. The results of this trial indicate that CAR T cell therapy is a viable option for treating glioblastoma. We conducted a first-in-human study of intravenous delivery of a single dose of autologous T cells redirected to the epidermal growth factor receptor variant III (EGFRvIII) mutation by a chimeric antigen receptor (CAR). We report our findings on the first 10 recurrent glioblastoma (GBM) patients treated. We found that manufacturing and infusion of CAR-modified T cell (CART)–EGFRvIII cells are feasible and safe, without evidence of off-tumor toxicity or cytokine release syndrome. One patient has had residual stable disease for over 18 months of follow-up. All patients demonstrated detectable transient expansion of CART-EGFRvIII cells in peripheral blood. Seven patients had post–CART-EGFRvIII surgical intervention, which allowed for tissue-specific analysis of CART-EGFRvIII trafficking to the tumor, phenotyping of tumor-infiltrating T cells and the tumor microenvironment in situ, and analysis of post-therapy EGFRvIII target antigen expression. Imaging findings after CART immunotherapy were complex to interpret, further reinforcing the need for pathologic sampling in infused patients. We found trafficking of CART-EGFRvIII cells to regions of active GBM, with antigen decrease in five of these seven patients. In situ evaluation of the tumor environment demonstrated increased and robust expression of inhibitory molecules and infiltration by regulatory T cells after CART-EGFRvIII infusion, compared to pre–CART-EGFRvIII infusion tumor specimens. Our initial experience with CAR T cells in recurrent GBM suggests that although intravenous infusion results in on-target activity in the brain, overcoming the adaptive changes in the local tumor microenvironment and addressing the antigen heterogeneity may improve the efficacy of EGFRvIII-directed strategies in GBM.


Journal of Clinical Investigation | 2016

Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies

Marco Ruella; David M. Barrett; Saad S. Kenderian; Olga Shestova; Ted J. Hofmann; Jessica Perazzelli; Michael Klichinsky; Vania Aikawa; Farzana Nazimuddin; Miroslaw Kozlowski; John Scholler; Simon F. Lacey; J. Joseph Melenhorst; Jennifer J.D. Morrissette; David A. Christian; Christopher A. Hunter; Michael Kalos; David L. Porter; Carl H. June; Stephan A. Grupp; Saar Gill

Potent CD19-directed immunotherapies, such as chimeric antigen receptor T cells (CART) and blinatumomab, have drastically changed the outcome of patients with relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL). However, CD19-negative relapses have emerged as a major problem that is observed in approximately 30% of treated patients. Developing approaches to preventing and treating antigen-loss escapes would therefore represent a vertical advance in the field. Here, we found that in primary patient samples, the IL-3 receptor α chain CD123 was highly expressed on leukemia-initiating cells and CD19-negative blasts in bulk B-ALL at baseline and at relapse after CART19 administration. Using intravital imaging in an antigen-loss CD19-negative relapse xenograft model, we determined that CART123, but not CART19, recognized leukemic blasts, established protracted synapses, and eradicated CD19-negative leukemia, leading to prolonged survival. Furthermore, combining CART19 and CART123 prevented antigen-loss relapses in xenograft models. Finally, we devised a dual CAR-expressing construct that combined CD19- and CD123-mediated T cell activation and demonstrated that it provides superior in vivo activity against B-ALL compared with single-expressing CART or pooled combination CART. In conclusion, these findings indicate that targeting CD19 and CD123 on leukemic blasts represents an effective strategy for treating and preventing antigen-loss relapses occurring after CD19-directed therapies.

Collaboration


Dive into the J. Joseph Melenhorst's collaboration.

Top Co-Authors

Avatar

Simon F. Lacey

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Carl H. June

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Bruce L. Levine

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

A. John Barrett

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nancy Hensel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David L. Porter

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Stephan A. Grupp

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Shannon L. Maude

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

David M. Barrett

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Fang Chen

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge