Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Julian Blow is active.

Publication


Featured researches published by J. Julian Blow.


Cell | 1986

Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs.

J. Julian Blow; Ronald A. Laskey

We demonstrate that cell-free extracts prepared from activated eggs of X. laevis by a method similar to that of Lohka and Masui initiate and complete semiconservative DNA replication of sperm nuclei and plasmid DNA. The efficiency of replication is comparable to that in the intact egg. Under optimal conditions 70%-100% of nuclei, and up to 38% of naked DNA molecules replicate completely. Genuine initiation of replication occurs rather than elongation of preformed primers or priming of irreversibly denatured templates. Rereplication of templates is observed under certain conditions. In addition to replicating DNA, these extracts also assemble nucleus-like structures from naked DNA.


Cell | 1989

Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis

Jeremy Minshull; J. Julian Blow; Tim Hunt

The cyclins are a family of proteins encoded by maternal mRNA. Cyclin polypeptides accumulate during interphase and are destroyed during mitosis at about the time of entry into anaphase. We show here that Xenopus oocytes contain mRNAs encoding two cyclins that are major translation products in a cell-free extract from activated eggs. Cutting these mRNAs with antisense oligonucleotides and endogenous RNAase H blocks entry into mitosis in a cell-free egg extract. The extracts can enter mitosis if either of the cyclin mRNAs is left intact. We conclude that the synthesis of these cyclins is necessary for mitotic cell cycles in cleaving Xenopus embryos.


Journal of Cell Biology | 2006

Excess Mcm2–7 license dormant origins of replication that can be used under conditions of replicative stress

Anna M. Woodward; Thomas Göhler; M. Gloria Luciani; Maren Oehlmann; Xinquan Ge; Anton Gartner; Dean A. Jackson; J. Julian Blow

In late mitosis and early G1, replication origins are licensed for subsequent use by loading complexes of the minichromosome maintenance proteins 2–7 (Mcm2–7). The number of Mcm2–7 complexes loaded onto DNA greatly exceeds the number of replication origins used during S phase, but the function of the excess Mcm2–7 is unknown. Using Xenopus laevis egg extracts, we show that these excess Mcm2–7 complexes license additional dormant origins that do not fire during unperturbed S phases because of suppression by a caffeine-sensitive checkpoint pathway. Use of these additional origins can allow complete genome replication in the presence of replication inhibitors. These results suggest that metazoan replication origins are actually comprised of several candidate origins, most of which normally remain dormant unless cells experience replicative stress. Consistent with this model, using Caenorhabditis elegans, we show that partial RNAi-based knockdown of MCMs that has no observable effect under normal conditions causes lethality upon treatment with low, otherwise nontoxic, levels of the replication inhibitor hydroxyurea.


Cell | 1996

Interaction between the Origin Recognition Complex and the Replication Licensing System in Xenopus

Alison Rowles; James P. J. Chong; Lamorna Brown; Michael T. Howell; Gerard I. Evan; J. Julian Blow

The origin recognition complex (ORC) binds to origins of replication in budding yeast. We have cloned a Xenopus homolog of the largest ORC polypeptide (XORC1). Immunodepletion of XOrc1 from Xenopus egg extracts blocks the initiation of DNA replication. We have purified Xenopus ORC, consisting of a protein complex similar to yeast ORC. In Xenopus egg extracts, ORC associates with chromatin throughout G1 and S phases. RLF-M, a component of the replication licensing system, also associates with chromatin early in the cell cycle but dissociates during S phase. We show that the assembly of RLF-M onto chromatin is dependent on the presence of chromatin-bound ORC, leading to sequential assembly of initiation proteins onto replication origins during the cell cycle.


Trends in Cell Biology | 2002

Replication licensing — Origin licensing: defining the proliferative state?

J. Julian Blow; Ben Hodgson

Abstract The proliferation of eukaryotic cells is a highly regulated process that depends on the precise duplication of chromosomal DNA in each cell cycle. Regulation of the replication licensing system, which promotes the assembly of complexes of proteins termed Mcm2–7 onto replication origins, is responsible for preventing re-replication of DNA in a single cell cycle. Recent work has shown how the licensing system is directly controlled by cyclin-dependent kinases (CDKs). Repression of origin licensing is emerging as a ubiquitous route by which the proliferative capacity of cells is lowered, and Mcm2–Mcm7 proteins show promise as diagnostic markers of early cancer stages. These results have prompted us to propose a functional distinction between the proliferative state and the non-proliferative state (including G0) depending on whether origins are licensed.


Current Biology | 1996

The Xenopus origin recognition complex is essential for DNA replication and MCM binding to chromatin

Piotr Romanowski; Mark A. Madine; Alison Rowles; J. Julian Blow; Ronald A. Laskey

BACKGROUND The origin recognition complex (ORC) and the minichromosome maintenance (MCM) protein complex were initially discovered in yeast and shown to be essential for DNA replication. Homologues of ORC and MCM proteins exist in higher eukaryotes, including Xenopus. The Xenopus MCM proteins and the Xenopus homologues of Saccharomyces cerevisiae Orc 1p and Orc2p (XOrc1 and XOrc2) have recently been shown to be essential for DNA replication. Here, we describe the different but interdependent functions of the ORC and MCM complexes in DNA replication in Xenopus egg extracts. RESULTS The XOrc1 and XOrc2 proteins are present in the same multiprotein complex in Xenopus egg extracts. Immunodepletion of ORC inhibits DNA replication of Xenopus sperm nuclei. Mixing MCM-depleted and ORC-depleted extracts restores replication capacity. ORC does not co-localize with sites of DNA replication during elongation. However, at initiation the two staining patterns overlap. In contrast to MCMs, which are displaced from chromatin during S phase, XOrc1 and XOrc2 are nuclear chromatin-bound proteins throughout interphase and move to the cytoplasm in mitosis. Permeable HeLa G1- and G2-phase nuclei can replicate in ORC-depleted extract, consistent with the presence of chromatin-bound ORC in both pre-replicative and post-replicative nuclei. Interestingly, the binding of ORC to chromatin does not require the presence of MCMs; however, the binding of MCM proteins to chromatin is dependent on the presence of ORC. CONCLUSIONS The Xenopus ORC and the MCM protein complex perform essential, non-redundant functions in DNA replication. Xenopus ORC is bound to chromatin throughout interphase but, in contrast to S. cerevisiae ORC, it appears to be, at least partly, displaced from chromatin during mitosis. The binding of MCM proteins requires the presence of ORC. Thus, the assembly of replication-competent chromatin involves the sequential binding of ORC and MCMs to DNA.


Nature Reviews Cancer | 2008

Replication Licensing and Cancer - a Fatal Entanglement?

J. Julian Blow; Peter J. Gillespie

Correct regulation of the replication licensing system ensures that chromosomal DNA is precisely duplicated in each cell division cycle. Licensing proteins are inappropriately expressed at an early stage of tumorigenesis in a wide variety of cancers. Here we discuss evidence that misregulation of replication licensing is a consequence of oncogene-induced cell proliferation. This misregulation can cause either under- or over-replication of chromosomal DNA, and could explain the genetic instability commonly seen in cancer cells.


Cell | 2006

Live-Cell Imaging Reveals Replication of Individual Replicons in Eukaryotic Replication Factories

Etsushi Kitamura; J. Julian Blow; Tomoyuki U. Tanaka

Faithful DNA replication ensures genetic integrity in eukaryotic cells, but it is still obscure how replication is organized in space and time within the nucleus. Using timelapse microscopy, we have developed a new assay to analyze the dynamics of DNA replication both spatially and temporally in individual Saccharomyces cerevisiae cells. This allowed us to visualize replication factories, nuclear foci consisting of replication proteins where the bulk of DNA synthesis occurs. We show that the formation of replication factories is a consequence of DNA replication itself. Our analyses of replication at specific DNA sequences support a long-standing hypothesis that sister replication forks generated from the same origin stay associated with each other within a replication factory while the entire replicon is replicated. This assay system allows replication to be studied at extremely high temporal resolution in individual cells, thereby opening a window into how replication dynamics vary from cell to cell.


Trends in Biochemical Sciences | 1996

The role of MCM/P1 proteins in the licensing of DNA replication

James P. J. Chong; Pia Thömmes; J. Julian Blow

The DNA replication licensing system ensures that eukaryotic chromosomes replicate precisely once per cell cycle. A central component of the licensing system, RLF-M, has recently been shown to consist of a complex of Mcm/P1 proteins. This result allows us to integrate data about the MCM/P1 family obtained in different eukaryotes, ranging from yeast to man, into a general picture of the way that chromosome replication is controlled.


Trends in Biochemical Sciences | 2011

How dormant origins promote complete genome replication

J. Julian Blow; Xin Quan Ge; Dean A. Jackson

Many replication origins that are licensed by loading MCM2-7 complexes in G1 are not normally used. Activation of these dormant origins during S phase provides a first line of defence for the genome if replication is inhibited. When replication forks fail, dormant origins are activated within regions of the genome currently engaged in replication. At the same time, DNA damage-response kinases activated by the stalled forks preferentially suppress the assembly of new replication factories, thereby ensuring that chromosomal regions experiencing replicative stress complete synthesis before new regions of the genome are replicated. Mice expressing reduced levels of MCM2-7 have fewer dormant origins, are cancer-prone and are genetically unstable, demonstrating the importance of dormant origins for preserving genome integrity. We review the function of dormant origins, the molecular mechanism of their regulation and their physiological implications.

Collaboration


Dive into the J. Julian Blow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge