Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J.K. Farney is active.

Publication


Featured researches published by J.K. Farney.


Journal of Dairy Science | 2015

Invited review: Inflammation during the transition to lactation: New adventures with an old flame

Barry J. Bradford; K. Yuan; J.K. Farney; L.K. Mamedova; A.J. Carpenter

For dairy cattle, the first several weeks of lactation represent the highest-risk period in their lives after their own neonatal period. Although more than 50% of cows during this period are estimated to suffer from at least one subclinical disorder, the complicated admixture of normal adaptations to lactation, infectious challenges, and metabolic disorders has made it difficult to determine which physiological processes are adaptive and which are pathological during this time. Subacute inflammation, a condition that has been well documented in obesity, has been a subject of great interest among dairy cattle physiologists in the past decade. Many studies have now clearly shown that essentially all cows experience some degree of systemic inflammation in the several days after parturition. The magnitude and likely persistence of the inflammatory state varies widely among cows, and several studies have linked the degree of postpartum inflammation to increased disease risk and decreased whole-lactation milk production. In addition to these associations, enhancing postpartum inflammation with repeated subacute administration of cytokines has impaired productivity and markers of health, whereas targeted use of nonsteroidal anti-inflammatory drugs during this window of time has enhanced whole-lactation productivity in several studies. Despite these findings, many questions remain about postpartum inflammation, including which organs are key initiators of this state and what signaling molecules are responsible for systemic and tissue-specific inflammatory states. Continued in vivo work should help clarify the degree to which mild postpartum inflammation is adaptive and whether the targeted use of anti-inflammatory drugs or nutrients can improve the health and productivity of dairy cows.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013

Anti-inflammatory salicylate treatment alters the metabolic adaptations to lactation in dairy cattle

J.K. Farney; L.K. Mamedova; Johann F. Coetzee; Butch KuKanich; Lorraine M. Sordillo; Sara K. Stoakes; J. Ernest Minton; Larry C. Hollis; Barry J. Bradford

Adapting to the lactating state requires metabolic adjustments in multiple tissues, especially in the dairy cow, which must meet glucose demands that can exceed 5 kg/day in the face of negligible gastrointestinal glucose absorption. These challenges are met through the process of homeorhesis, the alteration of metabolic setpoints to adapt to a shift in physiological state. To investigate the role of inflammation-associated pathways in these homeorhetic adaptations, we treated cows with the nonsteroidal anti-inflammatory drug sodium salicylate (SS) for the first 7 days of lactation. Administration of SS decreased liver TNF-α mRNA and marginally decreased plasma TNF-α concentration, but plasma eicosanoids and liver NF-κB activity were unaltered during treatment. Despite the mild impact on these inflammatory markers, SS clearly altered metabolic function. Plasma glucose concentration was decreased by SS, but this was not explained by a shift in hepatic gluconeogenic gene expression or by altered milk lactose secretion. Insulin concentrations decreased in SS-treated cows on day 7 compared with controls, which was consistent with the decline in plasma glucose concentration. The revised quantitative insulin sensitivity check index (RQUICKI) was then used to assess whether altered insulin sensitivity may have influenced glucose utilization rate with SS. The RQUICKI estimate of insulin sensitivity was significantly elevated by SS on day 7, coincident with the decline in plasma glucose concentration. Salicylate prevented postpartum insulin resistance, likely causing excessive glucose utilization in peripheral tissues and hypoglycemia. These results represent the first evidence that inflammation-associated pathways are involved in homeorhetic adaptations to lactation.


Journal of Dairy Science | 2011

An unusual distribution of the niacin receptor in cattle.

Evan C. Titgemeyer; Liaman Mamedova; K.S. Spivey; J.K. Farney; Barry J. Bradford

Responses to pharmacological doses of niacin, an agonist for GPR109A (niacin receptor), were different in cattle than in humans and rodents. Thus, the tissue distribution of GPR109A was investigated in cattle. Samples of tail head fat, back fat, perirenal fat, longissimus muscle, and liver were analyzed for abundance of GPR109A mRNA by quantitative real-time reverse transcription-PCR and for abundance of GPR109A protein by Western blotting. Niacin receptor transcript and protein were detected in all tissues analyzed. The mRNA for GPR109A was more abundant in liver than in the other tissues sampled (GPR109A:RPS9 mRNA abundance = 0.56 in liver compared with 0.06 in longissimus muscle, 0.15 in kidney fat, 0.11 in back fat, 0.23 in tail head fat; standard error of the mean = 0.028). Additionally, mRNA for GPR109A was found (GPR109A:RPS9 mRNA abundance ≥ 0.004) in each of the 5 regions of bovine brain that were analyzed: cerebral cortex, cerebellum, thalamus, hypothalamus, and brain stem. Evaluation of liver tissue by immunofluorescence suggested that GPR109A was expressed in parenchymal cells and not localized exclusively to immune-system cells. Finally, analysis of the putative bovine GPR109A sequence verified that AA residues required for binding niacin in human GPR109A are conserved, suggesting that the bovine sequence identified encodes a functional niacin receptor. The identification of GPR109A in bovine liver, muscle, and brain is a novel finding.


PLOS ONE | 2013

TNFα altered inflammatory responses, impaired health and productivity, but did not affect glucose or lipid metabolism in early-lactation dairy cows.

K. Yuan; J.K. Farney; L.K. Mamedova; Lorraine M. Sordillo; Barry J. Bradford

Inflammation may be a major contributing factor to peripartum metabolic disorders in dairy cattle. We tested whether administering an inflammatory cytokine, recombinant bovine tumor necrosis factor-α (rbTNFα), affects milk production, metabolism, and health during this period. Thirty-three Holstein cows (9 primiparous and 24 multiparous) were randomly assigned to 1 of 3 treatments at parturition. Treatments were 0 (Control), 1.5, or 3.0 µg/kg body weight rbTNFα, which were administered once daily by subcutaneous injection for the first 7 days of lactation. Statistical contrasts were used to evaluate the treatment and dose effects of rbTNFα administration. Plasma TNFα concentrations at 16 h post-administration tended to be increased (P<0.10) by rbTNFα administration, but no dose effect (P>0.10) was detected; rbTNFα treatments increased (P<0.01) concentrations of plasma haptoglobin. Most plasma eicosanoids were not affected (P>0.10) by rbTNFα administration, but 6 out of 16 measured eicosanoids changed (P<0.05) over the first week of lactation, reflecting elevated inflammatory mediators in the days immediately following parturition. Dry matter and water intake, milk yield, and milk fat and protein yields were all decreased (P<0.05) by rbTNFα treatments by 15 to 18%. Concentrations of plasma glucose, insulin, β-hydroxybutyrate, non-esterified fatty acids, triglyceride, 3-methylhistidine, and liver triglyceride were unaffected (P>0.10) by rbTNFα treatment. Glucose turnover rate was unaffected (P = 0.18) by rbTNFα administration. The higher dose of rbTNFα tended to increase the risk of cows developing one or more health disorders (P = 0.08). Taken together, these results indicate that administration of rbTNFα daily for the first 7 days of lactation altered inflammatory responses, impaired milk production and health, but did not significantly affect liver triglyceride accumulation or nutrient metabolism in dairy cows.


Journal of Dairy Science | 2011

Effects of prepartum 2,4-thiazolidinedione on insulin sensitivity, plasma concentrations of tumor necrosis factor-α and leptin, and adipose tissue gene expression

K.M. Schoenberg; K.L. Perfield; J.K. Farney; Barry J. Bradford; Yves R. Boisclair; T.R. Overton

Administration of peroxisome proliferator-activated receptor gamma (PPARγ) ligands, thiazolidinediones (TZD), to prepartum dairy cattle has been shown to improve dry matter intake and decrease circulating nonesterified fatty acids (NEFA) around the time of calving. The objective of this work was to elucidate mechanisms of TZD action in transition dairy cattle by investigating changes in plasma leptin, tumor necrosis factor-α (TNFα), the revised quantitative insulin sensitivity check index (RQUICKI), and adipose tissue gene expression of leptin, PPARγ, lipoprotein lipase (LPL), and fatty acid synthase (FAS). Multiparous Holstein cows (n=40) were administered 0, 2.0, or 4.0 mg of TZD/kg of body weight (BW) by intrajugular infusion once daily from 21 d before expected parturition until parturition. Plasma samples collected daily from 22 d before expected parturition through 21 d postpartum were analyzed for glucose, NEFA, and insulin. Plasma samples collected on d -14, -3, -1, 1, 3, 7, 14, and 49 relative to parturition were also analyzed for leptin and TNFα. Adipose tissue was collected on d 7 before expected parturition from a subset of cows, and gene expression was examined via quantitative real-time PCR. A tendency for a treatment by time effect on plasma leptin prepartum was observed such that values were similar on d -14 but cows receiving 2.0 mg/kg of BW of TZD tended to have lower circulating leptin as calving approached. Postpartum leptin tended to be increased linearly (2.3, 2.4, and 2.5±0.1 ng/mL for 0, 2.0, and 4.0 mg/kg treatments, respectively) in cows that received TZD prepartum. Plasma TNFα increased linearly (2.6, 3.7, and 4.0±0.1 pg/mL) in response to TZD treatment and decreased through the first week postpartum. Calculation of RQUICKI 1/[log(glucose)+log(insulin)+log(NEFA)] suggested altered insulin sensitivity in cows administered TZD that may depend on day relative to calving. Administration of TZD increased adipose tissue expression of PPARγ mRNA (11.0, 13.3, and 12.8±1.9). Administration of TZD had a quadratic effect on gene expression of leptin (16.2, 10.7, and 17.4±1.6) and no effect on LPL expression, and expression of FAS was lower for TZD-treated cows than for controls (8.2, 4.2, and 6.1±1.8, respectively). Results imply altered expression and plasma concentrations of leptin, increased plasma TNFα concentrations, and increased expression of PPARγ in adipose tissue as potential mechanisms for the effects of TZD administration on transition dairy cattle.


Journal of Dairy Science | 2011

Technical note: Validation of an ELISA for measurement of tumor necrosis factor alpha in bovine plasma

J.K. Farney; L.K. Mamedova; B.H. Godsey; Barry J. Bradford

Tumor necrosis factor α (TNFα) is an inflammatory cytokine that is involved in immune function and is proposed to play a role in metabolic disorders. Although some bovine-specific methods have been published recently, assays used for determining plasma TNFα concentration in bovine disease models often do not offer acceptable precision for measurement of basal concentrations in healthy animals. The objective of this work was to develop an effective, low-cost sandwich ELISA procedure with improved sensitivity. A protocol developed for use with cell culture supernatant was modified for use with bovine plasma and serum by optimizing antibody concentrations, incubation times and temperatures, and standard diluents. The coating antibody concentration was decreased from 10 to 6.8 μg/mL, whereas the detection antibody concentration remained 2.5 μg/mL. Sample incubation was increased from 1h at room temperature to an overnight incubation at 4°C, which increased the sensitivity of the assay. Multiple matrices were tested for dilution of standards and were assessed by determining recovery of bovine TNFα spiked into bovine serum and plasma. Recoveries were acceptable in both bovine serum and plasma (71-103%) when quantified with standards diluted in human serum or phosphate-buffered saline. The modified bovine TNFα ELISA offers a detection range of 2 to 250 pg/mL. This detection limit is at least an order of magnitude lower than previously reported, and will allow for greater precision in determining basal TNFα concentrations in bovine plasma. The improved sensitivity of this ELISA will be critical to assessing current hypotheses concerning the metabolic effects of moderately elevated TNFα concentrations.


Journal of Dairy Science | 2013

Sodium salicylate treatment in early lactation increases whole-lactation milk and milk fat yield in mature dairy cows

J.K. Farney; L.K. Mamedova; Johann F. Coetzee; J.E. Minton; Larry C. Hollis; Barry J. Bradford

Multiple lines of inquiry have suggested that a high degree of inflammation in early lactation cows is associated with low productivity and increased disease incidence. In addition, some small studies have suggested that milk production increases in response to antiinflammatory treatment in the first week of lactation. Our objective was to determine if administration of sodium salicylate (SS), a nonsteroidal antiinflammatory drug (NSAID), in the first week of lactation changes whole-lactation productivity and retention in the herd. At calving, 78 cows [n=39 primiparous (1P); n=24 second parity (2P); n=15 third parity or greater (3P)] were alternately assigned to either control (CON) or SS treatments for 7 d postpartum. Sodium salicylate treatment was administered via individual water bowls at a concentration of 1.95 g/L, delivering a mean of 123.3±5.5 g of salicylate/d during the 7-d treatment. For the first 21 d of lactation, dry matter intake, water intake, milk yield, and health were monitored daily, and milk samples were collected twice weekly for milk component analysis. Monthly milk yield and component testing through the rest of the lactation provided data to assess long-term responses, and the effects of treatment on the risk of leaving the herd and on 305-d milk, fat, and protein yields were assessed. During the first 21 d of lactation, we observed no differences in morbidity, except for increased risk of metritis in 3P SS cows. Treatment interacted with parity to influence both 305-d milk and milk fat yields, and a tendency for an interaction was detected for 305-d milk protein yield. Milk yield was 2,469±646 kg greater over the lactation in 3P SS cows compared with 3P CON cows (21% increase) and tended to decrease by 8% in 1P cows treated with SS; no effects were detected in 2P cows. Furthermore, 3P SS cows produced 130±23 kg more milk fat over the lactation (30% increase), with no effects detected for 1P or 2P. Treatment with SS tended to increase 305-d milk protein yield in 3P cows by 14%, with no effects in 1P or 2P cows. A tendency for a treatment × parity interaction was also observed for the risk of leaving the herd. First-parity cows treated with SS tended to have greater risk of leaving the herd than controls (30 vs. 6% risk); however, treatment did not alter herd retention in 2P or 3P groups, and SS had no effect on the risk of leaving the herd overall. Results indicate that SS has long-term effects on lactation of mature dairy cows, particularly on fat yield, but may have negative effects for primiparous cows.


Kansas Agricultural Experiment Station Research Reports | 2018

Growth, Forage Quality, and Economics of Cover Crop Mixes for Grazing

J.K. Farney; Gretchen F. Sassenrath; C. Davis; DeAnn Presley

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2018 Kansas State University Agricultural Experiment Station and Cooperative Extension Service.


Kansas Agricultural Experiment Station Research Reports | 2015

Improving Yield Stability and Resiliency of Agronomic Production Systems in Southeast Kansas

Gretchen F. Sassenrath; J.K. Farney; DeAnn Presley; C. Davis

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright January 2015 Kansas State University Agricultural Experiment Station and Cooperative Extension Service.


Kansas Agricultural Experiment Station Research Reports | 2015

Evaluating Multi-Species Cover Crops for Forage Production

C. Davis; DeAnn Presley; J.K. Farney; Gretchen F. Sassenrath

Cover crops offer potential benefits for improving soil health, but establishment and management costs can be expensive. One way for farmers to recover these costs is to graze the forage, which benefits producers by integrating crop and animal production. More information is needed on the potential forage quantity and quality for grazing livestock of cover crops and mixed species of cover crops. Researchers have suggested that different plant species complement each other, but additional work is needed to determine how best to balance forage production and how competitive the various species are when added to a mix. Sixteen treatments were drill-seeded at the Southeast Research and Extension Center near Columbus, Kansas, in August 2014 and 2015. Each treatment consisted of a three-way mix representing popular cover crops from the plant families Brassicaceae (brassicas), Poaceae (grasses), and Fabaceae (legumes). Eight species were planted, including forage radish (Raphanus sativus), purple-top turnip (Brassica rapa), oat (Avena sativa), rye (Secale cereale), barley (Hordeum vulgare), wheat (Triticum aestivum), Austrian winter pea (Pisum sativum subsp. arvense), and berseem clover (Trifolium alexandrinum). Small areas of each plot were clipped at 45-, 74-, and 91-day intervals each year. The clipped biomass was then weighed, sorted, and dried to determine biomass as well as species composition. In 2014 the average biomass produced at 45, 74, and 91 days was 1,250, 3,290, and 3,050 lb/ac, respectively. These range from 470–1,940 lb/ac 45 days after planting to 1,790–4,440 lb/ac at 91 days after planting, depending on the cover crop mix. In 2015, the average biomass at 45, 74, and 91 days was 1,120, 1,604, and 2,273 lb/ac, respectively. These range from 557-1,876 lb/ ac 45 days after planting to 1,100–4,127 lb/ac at 91 days after planting, depending on the cover crop mix.

Collaboration


Dive into the J.K. Farney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Davis

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B.H. Godsey

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

K. Yuan

Kansas State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge