Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. K. Langley is active.

Publication


Featured researches published by J. K. Langley.


Results in Mathematics | 1986

On the Frequency of Zeros of Solutions of Second Order Linear Differential Equations

Steven B. Bank; Ilpo Laine; J. K. Langley

We consider the equation % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A!


Complex Variables and Elliptic Equations | 1991

Oscillation theory for higher order linear differential equations with entire coefficients

Steven B. Bank; J. K. Langley

\rm f^{\prime\prime}+{A}(z){f}=0


Results in Mathematics | 1991

Some Oscillation Theorems for Higher Order Linear Differential Equations with Entire Coefficients of Small Growth

J. K. Langley

with linearly independent solutions f1,2, where A(z) is a transcendental entire function of finite order. Conditions are given on A(z) which ensure that max{λ(f1),λ(f2)} = ∞, where λ(g) denotes the exponent of convergence of the zeros of g. We show as a special case of a further result that if P(z) is a non-constant, real, even polynomial with positive leading coefficient then every non-trivial solution of % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A!


arXiv: Complex Variables | 2008

THE ESCAPING SET OF A QUASIREGULAR MAPPING

Walter Bergweiler; Alastair Fletcher; J. K. Langley; Janis Meyer

\rm f^{\prime\prime}+{e}^P{f}=0


Journal D Analyse Mathematique | 1994

On the zeros of meromorphic functions of the formf(z)=Σ k=1 ∞ a k/z−z k

Alexandre Eremenko; J. K. Langley; John Rossi

satisfies λ(f) = ∞. Finally we consider the particular equation % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A!


Results in Mathematics | 1994

On Second Order Linear Differential Polynomials

J. K. Langley

\rm f^{\prime\prime}+({e}^Z-K){f}=0


Proceedings of the Edinburgh Mathematical Society | 1987

On the oscillation of solutions of certain linear differential equations in the complex domain

Steven B. Bank; J. K. Langley

where K is a constant, which is of interest in that, depending on K, either every solution has λ(f) = ∞ or there exist two independent solutions f1, f2 each with λ(fi) ≤ 1.


Geometric and Functional Analysis | 2003

Real entire functions of infinite order and a conjecture of Wiman

Walter Bergweiler; Alexandre Eremenko; J. K. Langley

Sincc 1982, a considerable number of results have been proved concerning the frequency of zeros of solutions of second-order equations having entire coefficients. The proofs of these results were peculiar to second-order equations since they used techniques which hold only for second -order equations(e.g. the differential equalion for the product of two solutions). Surprisingly, we show in the present paper that these results also hold for higher-urder equations. The prook are far different than in the second-order case being asymptotic in nature.


Journal D Analyse Mathematique | 2005

Non-real zeros of higher derivatives of real entire functions of infinite order

J. K. Langley

We show that if A and B are entire of order less than 1/6, and are not both polynomials, then the linear differential equation % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A!


Proceedings of the Edinburgh Mathematical Society | 1996

A lower bound for the number of zeros of a meromorphic function and its second derivative

J. K. Langley

y(3)+Ay^\prime+By=0

Collaboration


Dive into the J. K. Langley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alastair Fletcher

Northern Illinois University

View shared research outputs
Top Co-Authors

Avatar

Janis Meyer

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilpo Laine

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge