Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J.-K. Park is active.

Publication


Featured researches published by J.-K. Park.


Physics of Plasmas | 1999

Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ)

H. W. Herrmann; Ivars Henins; J.-K. Park; Gary S. Selwyn

The atmospheric pressure plasma jet (APPJ) [A. Schutze et al., IEEE Trans. Plasma Sci. 26, 1685 (1998)] is a nonthermal, high pressure, uniform glow plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O), which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz rf. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains neutral metastable species (e.g., O2*, He*) and radicals (e.g., O, OH). This reactive effluent has been shown to be an effective neutralizer of surrogates for anthrax spores and mustard blister agent. Unlike conventional wet decontamination methods, the plasma effluent does not cause corrosion and it does not destroy wiring, electronics, or mo...


Nuclear Fusion | 2009

Principal physics developments evaluated in the ITER design review

R.J. Hawryluk; D.J. Campbell; G. Janeschitz; P.R. Thomas; R. Albanese; R. Ambrosino; C. Bachmann; L. R. Baylor; M. Becoulet; I. Benfatto; J. Bialek; Allen H. Boozer; A. Brooks; R.V. Budny; T.A. Casper; M. Cavinato; J.-J. Cordier; V. Chuyanov; E. J. Doyle; T.E. Evans; G. Federici; M.E. Fenstermacher; H. Fujieda; K. Gál; A. M. Garofalo; L. Garzotti; D.A. Gates; Y. Gribov; P. Heitzenroeder; T. C. Hender

As part of the ITER Design Review and in response to the issues identified by the Science and Technology Advisory Committee, the ITER physics requirements were reviewed and as appropriate updated. The focus of this paper will be on recent work affecting the ITER design with special emphasis on topics affecting near-term procurement arrangements. This paper will describe results on: design sensitivity studies, poloidal field coil requirements, vertical stability, effect of toroidal field ripple on thermal confinement, material choice and heat load requirements for plasma-facing components, edge localized modes control, resistive wall mode control, disruptions and disruption mitigation.


Physics of Plasmas | 2007

Computation of three-dimensional tokamak and spherical torus equilibria

J.-K. Park; Allen H. Boozer; Alan H. Glasser

A nominally axisymmetric plasma configuration, such as a tokamak or a spherical torus, is highly sensitive to nonaxisymmetric magnetic perturbations due to currents outside of the plasma. The high sensitivity means that the primary interest is in the response of the plasma to very small perturbations, i.e., ∣b∕B∣≈10−2 to 10−4, which can be calculated using the theory of perturbed equilibria. The ideal perturbed equilibrium code (IPEC) is described and applied to the study of the plasma response in a spherical torus to such external perturbations.


Nuclear Fusion | 2011

Advances towards QH-mode viability for ELM-stable operation in ITER

A. M. Garofalo; W.M. Solomon; J.-K. Park; K.H. Burrell; J.C. DeBoo; M. J. Lanctot; G.R. McKee; H. Reimerdes; L. Schmitz; M.J. Schaffer; P.B. Snyder

The application of static, non-axisymmetric, nonresonant magnetic fields (NRMFs) to high beta DIII-D plasmas has allowed sustained operation with a quiescent H-mode (QH-mode) edge and both toroidal rotation and neutral beam injected torque near zero. Previous studies have shown that QH-mode operation can be accessed only if sufficient radial shear in the plasma flow is produced near the plasma edge. In past experiments, this flow shear was produced using neutral beam injection (NBI) to provide toroidal torque. In recent experiments, this torque was nearly completely replaced by the torque from applied NRMFs. The application of the NRMFs does not degrade the global energy confinement of the plasma. Conversely, the experiments show that the energy confinement quality increases with lower plasma rotation. Furthermore, the NRMF torque increases plasma resilience to locked modes at low rotation. These results open a path towards QH-mode utilization as an edge-localized mode (ELM)-stable H-mode in the self-heated burning plasma scenario, where toroidal momentum input from NBI may be small or absent.


Physics of Plasmas | 2011

Measurement and modeling of three-dimensional equilibria in DIII-D

M. J. Lanctot; H. Reimerdes; A. M. Garofalo; M. S. Chu; J. M. Hanson; Yueqiang Liu; Gerald A. Navratil; I.N. Bogatu; Y. In; G.L. Jackson; R.J. La Haye; M. Okayabashi; J.-K. Park; Michael J. Schaffer; O. Schmitz; E. J. Strait; Alan D. Turnbull

A detailed experiment-theory comparison reveals that linear ideal MHD theory is in quantitative agreement with external magnetic and internal soft x-ray measurements of the plasma response to externally applied non-axisymmetric fields over a broad range of beta and rotation. This result represents a significant step toward the goal of advancing the understanding of three-dimensional tokamak equilibria. Both the magnetic and soft x-ray measurements show the driven plasma perturbation increases linearly with the applied perturbation, suggesting the relevance of linear plasma response models. The magnetic and soft x-ray measurements are made at multiple toroidal and poloidal locations, allowing well resolved measurements of the global structure. The comparison also highlights the need to include kinetic effects in the MHD model once beta exceeds 80% of the kink mode limit without a conducting wall. Two distinct types of response fields are identified by the linear ideal MHD model: one that consists of localized currents at the rational surfaces that cancel the applied resonant field and another that is excited by the components of the external field that couple to the kink mode. Numerical simulations show these two fields have similar amplitudes in ITER-shaped DIII-D discharges where n = 3 fields are used to suppress edge localized modes.


Nuclear Fusion | 2008

Error field correction in ITER

J.-K. Park; Allen H. Boozer; J. Menard; Michael J. Schaffer

A new method for correcting magnetic field errors in the ITER tokamak is developed using the Ideal Perturbed Equilibrium Code. The dominant external magnetic field for driving islands is shown to be localized to the outboard midplane for three ITER equilibria that represent the projected range of operational scenarios. The coupling matrices between the poloidal harmonics of the external magnetic perturbations and the resonant fields on the rational surfaces that drive islands are combined for different equilibria and used to determine an ordered list of the dominant errors in the external magnetic field. It is found that efficient and robust error field correction is possible with a fixed setting of the correction currents relative to the currents in the main coils across the range of ITER operating scenarios that was considered.


Physics of Plasmas | 2013

Comparisons of linear and nonlinear plasma response models for non-axisymmetric perturbationsa)

A.D. Turnbull; N.M. Ferraro; V.A. Izzo; E. A. Lazarus; J.-K. Park; W.A. Cooper; S.P. Hirshman; L. L. Lao; M.J. Lanctot; Samuel A. Lazerson; Y.Q. Liu; A. Reiman; F. Turco

With the installation of non-axisymmetric coil systems on major tokamaks for the purpose of studying the prospects of ELM-free operation, understanding the plasma response to the applied fields is a crucial issue. Application of different response models, using standard tools, to DIII-D discharges with applied non-axisymmetric fields from internal coils, is shown to yield qualitatively different results. The plasma response can be treated as an initial value problem, following the system dynamically from an initial unperturbed state, or from a nearby perturbed equilibrium approach, and using both linear and nonlinear models [A. D. Turnbull, Nucl. Fusion 52, 054016 (2012)]. Criteria are discussed under which each of the approaches can yield a valid response. In the DIII-D cases studied, these criteria show a breakdown in the linear theory despite the small 10−3 relative magnitude of the applied magnetic field perturbations in this case. For nonlinear dynamical evolution simulations to reach a saturated non...


Nuclear Fusion | 2010

Progress in understanding error-field physics in NSTX spherical torus plasmas

J. Menard; D.A. Gates; S.P. Gerhardt; S.M. Kaye; J.-K. Park; S.A. Sabbagh; J.W. Berkery; A. Egan; J. Kallman; Yueqiang Liu; A.C. Sontag; D. Swanson; W. Zhu

The low-aspect ratio, low magnetic field and wide range of plasma beta of NSTX plasmas provide new insight into the origins and effects of magnetic field errors. An extensive array of magnetic sensors has been used to analyse error fields, to measure error-field amplification and to detect resistive wall modes (RWMs) in real time. The measured normalized error-field threshold for the onset of locked modes shows a linear scaling with plasma density, a weak to inverse dependence on toroidal field and a positive scaling with magnetic shear. These results extrapolate to a favourable error-field threshold for ITER. For these low-beta locked-mode plasmas, perturbed equilibrium calculations find that the plasma response must be included to explain the empirically determined optimal correction of NSTX error fields. In high-beta NSTX plasmas exceeding the n = 1 no-wall stability limit where the RWM is stabilized by plasma rotation, active suppression of n = 1 amplified error fields and the correction of recently discovered intrinsic n = 3 error fields have led to sustained high rotation and record durations free of low-frequency core MHD activity. For sustained rotational stabilization of the n = 1 RWM, both the rotation threshold and the magnitude of the amplification are important. At fixed normalized dissipation, kinetic damping models predict rotation thresholds for RWM stabilization to scale nearly linearly with particle orbit frequency. Studies for NSTX find that orbit frequencies computed in general geometry can deviate significantly from those computed in the high-aspect ratio and circular plasma cross-section limit, and these differences can strongly influence the predicted RWM stability. The measured and predicted RWM stability is found to be very sensitive to the E × B rotation profile near the plasma edge, and the measured critical rotation for the RWM is approximately a factor of two higher than predicted by the MARS-F code using the semi-kinetic damping model.


Physics of Plasmas | 2009

Importance of plasma response to nonaxisymmetric perturbations in tokamaks

J.-K. Park; Allen H. Boozer; J. Menard; A. M. Garofalo; Michael J. Schaffer; R.J. Hawryluk; Stanley M. Kaye; S.P. Gerhardt; S.A. Sabbagh; Nstx Team

Tokamaks are sensitive to deviations from axisymmetry as small as δB/B0∼10−4. These nonaxisymmetric perturbations greatly modify plasma confinement and performance by either destroying magnetic surfaces with subsequent locking or deforming magnetic surfaces with associated nonambipolar transport. The Ideal Perturbed Equilibrium Code (IPEC) calculates ideal perturbed equilibria and provides important basis for understanding the sensitivity of tokamak plasmas to perturbations. IPEC calculations indicate that the ideal plasma response, or equivalently the effect by ideally perturbed plasma currents, is essential to explain locking experiments on National Spherical Torus eXperiment (NSTX) and DIII-D. The ideal plasma response is also important for neoclassical toroidal viscosity (NTV) in nonambipolar transport. The consistency between NTV theory and magnetic braking experiments on NSTX and DIII-D can be improved when the variation in the field strength in IPEC is coupled with generalized NTV theory. These pla...


Nuclear Fusion | 2011

ITER test blanket module error field simulation experiments at DIII-D

Michael J. Schaffer; J.A. Snipes; P. Gohil; P. de Vries; T.E. Evans; M.E. Fenstermacher; X. Gao; A. M. Garofalo; D.A. Gates; C. M. Greenfield; W.W. Heidbrink; G.J. Kramer; R.J. La Haye; Shujie Liu; A. Loarte; M. F. F. Nave; T.H. Osborne; N. Oyama; J.-K. Park; N. Ramasubramanian; H. Reimerdes; G. Saibene; A. Salmi; K. Shinohara; Donald A. Spong; W.M. Solomon; T. Tala; Y. B. Zhu; J.A. Boedo; V. Chuyanov

Experiments at DIII-D investigated the effects of magnetic error fields similar to those expected from proposed ITER test blanket modules (TBMs) containing ferromagnetic material. Studied were effects on: plasma rotation and locking, confinement, L–H transition, the H-mode pedestal, edge localized modes (ELMs) and ELM suppression by resonant magnetic perturbations, energetic particle losses, and more. The experiments used a purpose-built three-coil mock-up of two magnetized ITER TBMs in one ITER equatorial port. The largest effect was a reduction in plasma toroidal rotation velocity v across the entire radial profile by as much as Δv/v ~ 60% via non-resonant braking. Changes to global Δn/n, Δβ/β and ΔH98/H98 were ~3 times smaller. These effects are stronger at higher β. Other effects were smaller. The TBM field increased sensitivity to locking by an applied known n = 1 test field in both L- and H-mode plasmas. Locked mode tolerance was completely restored in L-mode by re-adjusting the DIII-D n = 1 error field compensation system. Numerical modelling by IPEC reproduces the rotation braking and locking semi-quantitatively, and identifies plasma amplification of a few n = 1 Fourier harmonics as the main cause of braking. IPEC predicts that TBM braking in H-mode may be reduced by n = 1 control. Although extrapolation from DIII-D to ITER is still an open issue, these experiments suggest that a TBM-like error field will produce only a few potentially troublesome problems, and that they might be made acceptably small.

Collaboration


Dive into the J.-K. Park's collaboration.

Top Co-Authors

Avatar

J. Menard

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

N.C. Logan

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S.P. Gerhardt

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Z.R. Wang

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge