Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J.K. Wang is active.

Publication


Featured researches published by J.K. Wang.


Biomaterials | 2014

Repair of spinal cord injury by inhibition of astrocyte growth and inflammatory factor synthesis through local delivery of flavopiridol in PLGA nanoparticles.

Hao Ren; Min Han; Jing Zhou; Zefeng Zheng; Ping Lu; J.K. Wang; Jiaqiu Wang; Qijiang Mao; Jian-Qing Gao; Hongwei Ouyang

The cell-cycle inhibitor flavopiridol has been shown to improve recovery from spinal cord injury in animal models. However, the systemic dose of flavopiridol has side-effects and the mechanism of action is not clear. This study aimed to develop a strategy for the local delivery of flavopiridol and investigate its mechanisms of action. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) were used for the sustained delivery of flavopiridol. The spinal cord was right-hemisectioned and NPs were delivered into the injury site. Transparent spinal cord technology was used for the three-dimensional observation of anterograde tracing. The results showed that flavopiridol NPs had a sustained release of up to 3 days in vitro. Flavopiridol NPs significantly decreased inflammatory factor synthesis by astrocytes, including TNF-α, IL-1β, and IL-6, while the IL-10 expression was elevated. In vivo study demonstrated that flavopiridol NPs decreased cell-cycle activation, inflammatory expression and glial scarring, and facilitated neuronal survival and regeneration. The cavitation volume was decreased by ~90%. Administration of flavopiridol NPs also improved the motor recovery of injured animals. These findings demonstrated that local delivery of flavopiridol in PLGA NPs improves recovery from spinal cord injury by inhibiting astrocyte growth and inflammatory factor synthesis.


Animal | 2012

Effects of disodium fumarate on ruminal fermentation and microbial communities in sheep fed on high-forage diets

Yunan Zhou; Christopher S. McSweeney; J.K. Wang; J. X. Liu

This study was conducted to investigate effects of disodium fumarate (DF) on fermentation characteristics and microbial populations in the rumen of Hu sheep fed on high-forage diets. Two complementary feeding trials were conducted. In Trial 1, six Hu sheep fitted with ruminal cannulae were randomly allocated to a 2 × 2 cross-over design involving dietary treatments of either 0 or 20 g DF daily. Total DNA was extracted from the fluid- and solid-associated rumen microbes, respectively. Numbers of 16S rDNA gene copies associated with rumen methanogens and bacteria, and 18S rDNA gene copies associated with rumen protozoa and fungi were measured using real-time PCR, and expressed as proportion of total rumen bacteria 16S rDNA. Ruminal pH decreased in the DF group compared with the control (P < 0.05). Total volatile fatty acids increased (P < 0.001), but butyrate decreased (P < 0.01). Addition of DF inhibited the growth of methanogens, protozoa, fungi and Ruminococcus flavefaciens in fluid samples. Both Ruminococcus albus and Butyrivibrio fibrisolvens populations increased (P < 0.001) in particle-associated samples. Trial 2 was conducted to investigate the adaptive response of rumen microbes to DF. Three cannulated sheep were fed on basal diet for 2 weeks and continuously for 4 weeks with supplementation of DF at a level of 20 g/day. Ruminal samples were collected every week to analyze fermentation parameters and microbial populations. No effects of DF were observed on pH, acetate and butyrate (P > 0.05). Populations of methanogens and R. flavefaciens decreased in the fluid samples (P < 0.001), whereas addition of DF stimulated the population of solid-associated Fibrobacter succinogenes. Population of R. albus increased in the 2nd to 4th week in fluid-associated samples and was threefold higher in the 4th week than control week in solid samples. Analysis of denaturing gradient gel electrophoresis fingerprints revealed that there were significant changes in rumen microbiota after adding DF. Ten of 15 clone sequences from cut-out bands appearing in both the 2nd and the 4th week were 94% to 100% similar to Prevotella-like bacteria, and four sequences showed 95% to 98% similarity to Selenomonas dianae. Another 15 sequences were obtained from bands, which appeared in the 4th week only. Thirteen of these 15 sequences showed 95% to 99% similarity to Clostridium sp., and the other two showed 95% and 100% similarity to Ruminococcus sp. In summary, the microorganisms positively responding to DF addition were the cellulolytic bacteria, R. albus, F. succinogenes and B. fibrisolvens as well as proteolytic bacteria, B. fibrisolvens, P. ruminicola and Clostridium sp.


Journal of Organic Chemistry | 2013

Copper-catalyzed cascade preparation of dihydropyrimidin-4-ones from N-(prop-2-yn-1-yl)amides and azides.

J.K. Wang; Ping Lu; Yijia Wang

Dihydropyrimidin-4-ones were efficiently synthesized from copper catalyzed reaction between N-(prop-2-yn-1-yl)amides and sulfonylazides under mild conditions in moderate to excellent yields (up to 96% yields). The cascade process involves the copper-catalyzed alkyne-azide cycloaddition, the formation of ketenimine intermediate, the intramolecular nucleophilic addition of ketenimine, and subsequent rearrangement.


Biomaterials | 2015

Local delivery of FTY720 in PCL membrane improves SCI functional recovery by reducing reactive astrogliosis

J.K. Wang; Jiaqiu Wang; Ping Lu; Youzhi Cai; Yafei Wang; Lan Hong; Hao Ren; Boon Chin Heng; Hua Liu; Jing Zhou; Hongwei Ouyang

FTY720 has recently been approved as an oral drug for treating relapsing forms of multiple sclerosis, and exerts its therapeutic effect by acting as an immunological inhibitor targeting the sphingosine-1-phosphate (S1P) receptor subtype (S1P1) of T cells. Recently studies demonstrated positive efficacy of this drug on spinal cord injury (SCI) in animal models after systemic administration, albeit with significant adverse side effects. We hereby hypothesize that localized delivery of FTY720 can promote SCI recovery by reducing pathological astrogliosis. The mechanistic functions of FTY720 were investigated in vitro and in vivo utilizing immunofluorescence, histology, MRI and behavioral analysis. The in vitro study showed that FTY720 can reduce astrocyte migration and proliferation activated by S1P. FTY720 can prolong internalization of S1P1 and exert antagonistic effects on S1P1. In vivo study of SCI animal models demonstrated that local delivery of FTY720 with polycaprolactone (PCL) membrane significantly decreased S1P1 expression and glial scarring compared with the control group. Furthermore, FTY720-treated groups exhibited less cavitation volume and neuron loss, which significantly improved recovery of motor function. These findings demonstrated that localized delivery of FTY720 can promote SCI recovery by targeting the S1P1 receptor of astrocytes, provide a new therapeutic strategy for SCI treatment.


Acta Biomaterialia | 2016

The effects of lactate and acid on articular chondrocytes function: Implications for polymeric cartilage scaffold design.

Xiaolei Zhang; Yan Wu; Zongyou Pan; Heng Sun; J.K. Wang; Dongsheng Yu; Shouan Zhu; Jun Dai; Yishan Chen; Nai-Feng Tian; Boon Chin Heng; Noelle D. Coen; Huazi Xu; Hongwei Ouyang

UNLABELLED Poly (lactic-co-glycolic acid) (PLGA) and poly-l-lactate acid (PLLA) are biodegradable polymers widely utilized as scaffold materials for cartilage tissue engineering. Their acid degradation products have been widely recognized as being detrimental to cell function. However, the biological effects of lactate, rather than lactic acid, on chondrocytes have never been investigated. This is the major focus of this study. The amounts of lactate and the pH value (acid) of the PLGA and PLLA degradation medium were measured. The effects of PLGA and PLLA degradation medium, as well as different lactate concentrations and timing of exposure on chondrocytes proliferation and cartilage-specific matrix synthesis were investigated by various techniques including global gene expression profiling and gene knockdown experiments. It was shown that PLGA and PLLA degradation medium differentially regulated chondrocyte proliferation and matrix synthesis. Acidic pH caused by lactate inhibited chondrocyte proliferation and matrix synthesis. The effect of lactate on chondrocyte matrix synthesis was both time and dose dependent. A lactate concentration of 100mM and exposure duration of 8h significantly enhanced matrix synthesis. Lactate could also inhibit expression of cartilage matrix degradation genes in osteoarthritic chondrocytes, such as the major aggrecanase ADAMTS5, whilst promoting matrix synthesis simultaneously. Pulsed addition of lactate was shown to be more efficient in promoting COL2A1 expression. Global gene expression data and gene knock down experiments demonstrated that lactate promote matrix synthesis through up-regulation of HIF1A. These observed differential biological effects of lactate on chondrocytes would have implications for the future design of polymeric cartilage scaffolds. STATEMENT OF SIGNIFICANCE Lactic acid is a widely used substrate for polymers synthesis, PLGA and PLLA in particular. Although physical and biological modifications have been made on these polymers to make them be better cartilage scaffolds, little concern has been given on the biological effect of lactic acid, the main degradation product of these polymers, on chondrocytes. Our finding illustrates the differential biological function of lactate and acid on chondrocytes matrix synthesis. These results can facilitate future design of lactate polymers-based cartilage scaffolds.


Animal | 2015

Effects of γ-aminobutyric acid on feed intake, growth performance and expression of related genes in growing lambs

D.M. Wang; B. Chacher; H. Y. Liu; J.K. Wang; J. Lin; J. X. Liu

This study was conducted to investigate the effects of rumen-protected γ-aminobutyric acid (GABA) on feed intake, growth performance and expression of related genes in growing lambs. A total of 24 lambs weaned at age of 50 days were divided into four block of six based on their BW, six lambs within a block were allocated to three pairs, which were then assigned randomly to three treatments with addition of rumen-protected GABA at levels of 0, 70 or 140 mg/day for 6 weeks. Dry matter intake was recorded weekly in three consecutive days, and BW was recorded every two weeks. At the end of the trial, four lambs from each group were slaughtered, and duodenum and ileum mucosa were obtained for measurement of mRNA abundance of GABA receptor and cholecystokinin receptor. Dry matter intake was higher (P<0.01) in the lambs fed 140 mg/day GABA than that in the control or 70 mg GABA-fed lambs. Average daily gain and nutrients digestibility were not different (P>0.05) among treatments. Lambs fed 140 mg/day GABA had higher mRNA abundance of GABA-B receptor (P<0.01) and lower mRNA abundance of cholecystokinin-2 receptor (P<0.01) in duodenum mucosa. Serum CCK content was lower (P<0.01) in lambs fed 140 mg/day GABA than that in control. It is indicated that GABA may enhance feed intake by regulating GABA- and cholecystokinin-related genes.


Acta Biomaterialia | 2018

Exogenous stromal derived factor-1 releasing silk scaffold combined with intra-articular injection of progenitor cells promotes bone-ligament-bone regeneration

Yejun Hu; Jisheng Ran; Zefeng Zheng; Zhangchu Jin; Xiao Chen; Zi Yin; Chenqi Tang; Yangwu Chen; Jiayun Huang; Huihui Le; Ruijian Yan; Ting Zhu; J.K. Wang; Junxin Lin; Kan Xu; Yi Ting Zhou; Wei Zhang; Youzhi Cai; Pioletti Dominique; Boon Chin Heng; Weishan Chen; Weiliang Shen; Hongwei Ouyang

Anterior cruciate ligament (ACL) is one of the most difficult tissues to heal once injured. Ligament regeneration and tendon-bone junction healing are two major goals of ACL reconstruction. This study aimed to investigate the synergistic therapeutic effects of Stromal cell-derived factor 1 (SDF-1)-releasing collagen-silk (CSF) scaffold combined with intra-articular injection of ligament-derived stem/progenitor cells (LSPCs) for ACL regeneration and the amelioration in the long-term complication of osteoarthritis (OA). The stem cell recruitment ability of CSF scaffold and the multipotency, particularly the tendon forming ability of LSPCs from rabbits were characterized in vitro, while the synergistic effect of the CSF scaffold and LSPCs for ACL regeneration and OA amelioration were investigated in vivo at 1, 3, and 6 months with a rabbit ACL reconstruction model. The CSF scaffold was used as a substitute for the ACL, and LSPCs were injected into the joint cavity after 7 days of the ACL reconstruction. CSF scaffold displayed a controlled release pattern for the encapsulated protein for up to 7 days with an increased stiffness in the mechanical property. LSPCs, which exhibited highly I Collagen and CXCR4 expression, were attracted by SDF-1 and successfully relocated into the CSF scaffold at 1 month in vivo. At 3 and 6 months post-treatment, the CSF scaffold combined with LSPCs (CSFL group) enhanced the regeneration of ACL tissue, and promoted bone tunnel healing. Furthermore, the OA progression was impeded efficiently. Our findings here provided a new strategy that using stem cell recruiting CSF scaffold with tissue-specific stem cells, could be a promising solution for ACL regeneration. STATEMENT OF SIGNIFICANCE In this study, we developed a silk scaffold with increased stiffness and SDF-1 controlled release capacity for ligament repair. This advanced scaffold transplantation combined with intra-articular injection of LSPCs (which was isolated from rabbit ligament for the first time in this study) promoted the regeneration of both the tendinous and bone tunnel portion of ACL. This therapeutic strategy also ameliorated cartilage degeneration and reduced the severity of arthrofibrosis. Hence, combining LSPCs injection with SDF-1-releasing silk scaffold is demonstrated as a therapeutic strategy for ACL regeneration and OA treatment in the clinic.


Journal of Dairy Science | 2017

Short communication: Effects of dietary 5,6-dimethylbenzimidazole supplementation on vitamin B12 supply, lactation performance, and energy balance in dairy cows during the transition period and early lactation

D.M. Wang; Bingren Zhang; J.K. Wang; Hongru Liu; J.X. Liu

The current study was conducted to investigate the effects of 5,6-dimethylbenzimidazole (DMB) supplementation to the feed during the transition period and early lactation on the vitamin B12 supply, lactation performance, and energy balance in postpartum cows. Twenty-four prepartum Holstein dairy cows were divided into 12 blocks based on their parity and milk yield at the last lactation and were then randomly allocated to 1 of 2 treatments: a basal diet without DMB (control) or a treatment diet that contained 1.5 g of DMB/d per cow. The study started at wk 3 before the expected calving day and ended at wk 8 postpartum. The feed intake and the lactation performance were measured weekly after calving. Blood parameters were measured on d -10, 0, 8, 15, 29, 43, and 57 relative to the calving day. Body weight was measured on the calving day and on d 57 after calving. The yields of milk, protein, and lactose in cows fed DMB were higher than in the control throughout the whole postpartum stage. On wk 8 postpartum, the vitamin B12 content in the milk and sera was greater in cows fed DMB than in the control. The overall body weight loss from wk 1 to 8 postpartum was less in cows fed DMB than in the control. The plasma content of nonesterified fatty acids and β-hydroxybutyric acid was significantly lower in cows fed DMB than in the control throughout the whole experimental stage. In conclusion, dietary DMB fed during the transition period and early lactation improved the vitamin B12 supply, milk production, and energy balance of postpartum dairy cows.


Journal of Dairy Science | 2018

Effect of dietary supplements of biotin, intramuscular injections of vitamin B12, or both on postpartum lactation performance in multiparous dairy cows

D.M. Wang; Bingren Zhang; J.K. Wang; Hongru Liu; J.X. Liu

The current study was conducted to investigate the effects of dietary supplementation of biotin, intramuscular injections of vitamin B12 (VB12), or both beginning at the prepartum period on feed intake and lactation performance in postpartum dairy cows. Forty-eight dairy cows were allocated into 12 blocks, based on parity and milk yield of the previous lactation cycle, and randomly assigned to 1 of 4 treatments. Supplementation of VB12 (weekly intramuscular injections of 0 or 10 mg) and biotin (dietary supplements of 0 or 30 mg/d) were used in a 2 × 2 factorial arrangement in a randomized complete block design of 12 blocks with repeated measures. The study started at 3 wk before the expected calving date and ended at 8 wk after calving. Feed intake and lactation performance (milk yield and composition) were recorded weekly after calving. Blood variables were measured on d -10, 0, 8, 15, 29, 43, and 57 relative to calving. When VB12 was given, the cows had greater feed intake, better lactation performance and lower body weight loss in the postpartum period compared with animals without injection of VB12. The VB12-injected cows had lower plasma nonesterified fatty acids and β-hydroxybutyrate concentrations but higher plasma superoxide dismutase activity compared with cows without VB12. Cows fed a biotin supplement had higher milk protein yield (6 and 8 wk) and lactose yield (6-8 wk), compared with animals without biotin. However, under the present experimental conditions, we found no additive effect of a combined supplement of biotin and vitamin B12 on lactation performance of dairy cows.


Animal Feed Science and Technology | 2008

Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro

Chao Zhang; Yanqiu Guo; Z.P. Yuan; Yutao Wu; J.K. Wang; J.X. Liu; Weiyun Zhu

Collaboration


Dive into the J.K. Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge