Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Krempel is active.

Publication


Featured researches published by J. Krempel.


Physics Letters B | 2014

A measurement of the neutron to 199Hg magnetic moment ratio

S. Afach; C. A. Baker; G. Ban; Georg Bison; K. Bodek; M. Burghoff; Z. Chowdhuri; M. Daum; M. Fertl; B. Franke; P. Geltenbort; K. Green; M. G. D. van der Grinten; Zoran D. Grujić; P. Harris; W. Heil; V. Hélaine; R. Henneck; M. Horras; P. Iaydjiev; S.N. Ivanov; M. Kasprzak; Y. Kermaidic; K. Kirch; A. Knecht; H.-C. Koch; J. Krempel; M. Kuźniak; B. Lauss; T. Lefort

The neutron gyromagnetic ratio has been measured relative to that of the 199Hg atom with an uncertainty of 0.8 ppm. We employed an apparatus where ultracold neutrons and mercury atoms are stored in the same volume and report the result γn/γHg=3.8424574(30).


Physics Letters B | 2015

Constraining interactions mediated by axion-like particles with ultracold neutrons

S. Afach; G. Ban; Georg Bison; K. Bodek; Martin Burghoff; M. Daum; M. Fertl; B. Franke; Zoran D. Grujić; V. Hélaine; M. Kasprzak; Y. Kermaidic; K. Kirch; Paul E. Knowles; H.-C. Koch; S. Komposch; A. Kozela; J. Krempel; B. Lauss; T. Lefort; Y. Lemière; A. Mtchedlishvili; O. Naviliat-Cuncic; F. M. Piegsa; G. Pignol; P. N. Prashanth; G. Quéméner; D. Rebreyend; D. Ries; S. Roccia

We report a new limit on a possible short range spin-dependent interaction from the precise measurement of the ratio of Larmor precession frequencies of stored ultracold neutrons and Hg-199 atoms confined in the same volume. The measurement was performed in a similar to 1 mu T vertical magnetic holding field with the apparatus searching for a permanent electric dipole moment of the neutron at the Paul Scherrer Institute. A possible coupling between freely precessing polarized neutron spins and unpolarized nucleons of the wall material can be investigated by searching for a tiny change of the precession frequencies of neutron and mercury spins. Such a frequency change can be interpreted as a consequence of a short range spin-dependent interaction that could possibly be mediated by axions or axion-like particles. The interaction strength is proportional to the CP violating product of scalar and pseudoscalar coupling constants g(S)g(P). Our result confirms limits from complementary experiments with spin-polarized nuclei in a model-independent way. Limits from other neutron experiments are improved by up to two orders of magnitude in the interaction range of 10(-6) < lambda < 10(-4) m


Physical Review Letters | 2015

Observation of Gravitationally Induced Vertical Striation of Polarized Ultracold Neutrons by Spin-Echo Spectroscopy

S. Afach; N. J. Ayres; G. Ban; Georg Bison; K. Bodek; Z. Chowdhuri; M. Daum; M. Fertl; B. Franke; W. C. Griffith; Zoran D. Grujić; P. Harris; W. Heil; V. Hélaine; M. Kasprzak; Y. Kermaidic; K. Kirch; Paul E. Knowles; H.-C. Koch; S. Komposch; A. Kozela; J. Krempel; B. Lauss; T. Lefort; Y. Lemière; A. Mtchedlishvili; M. Musgrave; O. Naviliat-Cuncic; J.M. Pendlebury; F. M. Piegsa

We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1  μT magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCNs of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of 1.1  pT/cm. This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime.


European Physical Journal D | 2015

Measurement of a false electric dipole moment signal from 199Hg atoms exposed to an inhomogeneous magnetic field

S. Afach; C. A. Baker; G. Ban; Georg Bison; K. Bodek; Z. Chowdhuri; M. Daum; M. Fertl; B. Franke; P. Geltenbort; K. Green; M. G. D. van der Grinten; Zoran D. Grujić; P. Harris; W. Heil; V. Hélaine; R. Henneck; M. Horras; P. Iaydjiev; S.N. Ivanov; M. Kasprzak; Y. Kermaidic; K. Kirch; Paul E. Knowles; H.-C. Koch; S. Komposch; A. Kozela; J. Krempel; B. Lauss; T. Lefort

We report on the measurement of a Larmor frequency shift proportional to the electric-field strength for 199Hg atoms contained in a volume permeated with aligned magnetic and electric fields. This shift arises from the interplay between the inevitable magnetic field gradients and the motional magnetic field. The proportionality to electric-field strength makes it apparently similar to an electric dipole moment (EDM) signal, although unlike an EDM this effect is P- and T-conserving. We have used a neutron magnetic resonance EDM spectrometer, featuring a mercury co-magnetometer and an array of external cesium magnetometers, to measure the shift as a function of the applied magnetic field gradient. Our results are in good agreement with theoretical expectations.Graphical abstract


Optics Express | 2015

Highly stable atomic vector magnetometer based on free spin precession

S. Afach; G. Ban; Georg Bison; K. Bodek; Z. Chowdhuri; Zoran D. Grujić; L. Hayen; V. Hélaine; M. Kasprzak; K. Kirch; Paul E. Knowles; H. C. Koch; S. Komposch; A. Kozela; J. Krempel; B. Lauss; T. Lefort; Y. Lemière; A. Mtchedlishvili; O. Naviliat-Cuncic; F. M. Piegsa; P. N. Prashanth; G. Quéméner; M. Rawlik; D. Ries; S. Roccia; D. Rozpędzik; P. Schmidt-Wellenburg; N. Severjins; Antoine Weis

We present a magnetometer based on optically pumped Cs atoms that measures the magnitude and direction of a 1 μT magnetic field. Multiple circularly polarized laser beams were used to probe the free spin precession of the Cs atoms. The design was optimized for long-time stability and achieves a scalar resolution better than 300 fT for integration times ranging from 80 ms to 1000 s. The best scalar resolution of less than 80 fT was reached with integration times of 1.6 to 6 s. We were able to measure the magnetic field direction with a resolution better than 10 μrad for integration times from 10 s up to 2000 s.


Physical Review | 2016

Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields

C. Abel; N. J. Ayres; G. Ban; Georg Bison; K. Bodek; V. Bondar; M. Daum; Malcolm Fairbairn; V. V. Flambaum; P. Geltenbort; K. Green; W. C. Griffith; M. G. D. van der Grinten; Zoran D. Grujić; P. Harris; N. Hild; P. Iaydjiev; S.N. Ivanov; M. Kasprzak; Y. Kermaidic; K. Kirch; H.-C. Koch; S. Komposch; P. A. Koss; A. Kozela; J. Krempel; B. Lauss; T. Lefort; Y. Lemière; David J. E. Marsh

We report on a search for ultra-low-mass axion-like dark matter by analysing the ratio of the spinprecession frequencies of stored ultracold neutrons and 199Hg atoms for an axion-induced oscillating electric dipole moment of the neutron and an axion-wind spin-precession effect. No signal consistent with dark matter is observed for the axion mass range 1024 eV ma 10 17 eV. Our null result sets the first laboratory constraints on the coupling of axion dark matter to gluons, which improve on astrophysical limits by up to 3 orders of magnitude, and also improves on previous laboratory constraints on the axion coupling to nucleons by up to a factor of 40.


Physical Review D | 2015

Gravitational Depolarization of Ultracold Neutrons: Comparison with Data

S. Afach; N. J. Ayres; C. A. Baker; G. Ban; Georg Bison; K. Bodek; M. Fertl; B. Franke; P. Geltenbort; K. Green; W. C. Griffith; M. G. D. van der Grinten; Zoran D. Grujić; P. Harris; W. Heil; V. Hélaine; P. Iaydjiev; S.N. Ivanov; M. Kasprzak; Y. Kermaidic; K. Kirch; H.-C. Koch; S. Komposch; A. Kozela; J. Krempel; B. Lauss; T. Lefort; Y. Lemière; M. Musgrave; O. Naviliat-Cuncic

We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical magnetic-field gradients. In particular, we have investigated the dependence upon these field gradients of spin-depolarization rates and also of shifts in the measured neutron Larmor precession frequency. We find excellent qualitative agreement, with gravitationally enhanced depolarization accounting for several previously unexplained features in the data.


Applied Physics B | 2014

Experimental study of 199Hg spin anti-relaxation coatings

Z. Chowdhuri; M. Fertl; M. Horras; K. Kirch; J. Krempel; B. Lauss; A. Mtchedlishvili; D. Rebreyend; S. Roccia; P. Schmidt-Wellenburg; G. Zsigmond

We report on a comparison of spin relaxation rates in a 199Hg magnetometer using different wall coatings. A compact mercury magnetometer was built for this purpose. Glass cells coated with fluorinated materials show longer spin coherence times than if coated with their hydrogenated homologues. The longest spin relaxation time of the mercury vapor was measured with a fluorinated paraffin wall coating.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2018

Demonstration of sensitivity increase in mercury free-spin-precession magnetometers due to laser-based readout for neutron electric dipole moment searches

G. Ban; G. Bison; K. Bodek; M. Daum; M. Fertl; Beatrice Franke; Z. D. Grujić; W. Heil; M. Horras; M. Kasprzak; Y. Kermaidic; K. Kirch; H.-C. Koch; S. Komposch; A. Kozela; J. Krempel; B. Lauss; T. Lefort; A. Mtchedlishvili; G. Pignol; F. M. Piegsa; P. Prashanth; G. Quéméner; M. Rawlik; D. Rebreyend; D. Ries; S. Roccia; Dagmara Rozpędzik; P. Schmidt-Wellenburg; N. Severijns

Abstract We report on a laser based 199 Hg co-magnetometer deployed in an experiment searching for a permanent electric dipole moment of the neutron. We demonstrate a more than five times increased signal to-noise-ratio in a direct comparison measurement with its 204 Hg discharge bulb-based predecessor. An improved data model for the extraction of important system parameters such as the degrees of absorption and polarization is derived. Laser- and lamp-based data-sets can be consistently described by the improved model which permits to compare measurements using the two different light sources and to explain the increase in magnetometer performance. The laser-based magnetometer satisfies the magnetic field sensitivity requirements for the next generation nEDM experiments.


American Journal of Physics | 2018

A simple method of coil design

M. Rawlik; A. Eggenberger; J. Krempel; C. Crawford; K. Kirch; F. M. Piegsa; G. Quéméner

In this article, we present a method to design a coil producing an arbitrarily shaped magnetic field by restricting the path of the coils wires to a regular grid. The solution is then found by a simple least squares minimum. We discuss practical applications, in particular, in the active magnetic field stabilization system of the neutron electric dipole moment experiment at the Paul Scherrer Institute in Villigen, Switzerland. We also publish the software implementation of the method.

Collaboration


Dive into the J. Krempel's collaboration.

Top Co-Authors

Avatar

K. Kirch

Paul Scherrer Institute

View shared research outputs
Top Co-Authors

Avatar

B. Lauss

Paul Scherrer Institute

View shared research outputs
Top Co-Authors

Avatar

K. Bodek

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

Georg Bison

Paul Scherrer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Kozela

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

M. Daum

Paul Scherrer Institute

View shared research outputs
Top Co-Authors

Avatar

S. Komposch

Paul Scherrer Institute

View shared research outputs
Top Co-Authors

Avatar

H.-C. Koch

Paul Scherrer Institute

View shared research outputs
Top Co-Authors

Avatar

M. Kasprzak

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge