Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J.L. Oskins is active.

Publication


Featured researches published by J.L. Oskins.


Pain | 2011

Local application of the endocannabinoid hydrolysis inhibitor URB597 reduces nociception in spontaneous and chemically induced models of osteoarthritis.

Niklas Schuelert; Michael P. Johnson; J.L. Oskins; Karandeep Jassal; Mark Chambers; Jason J. McDougall

&NA; The present study examined whether enhancement of endogenous cannabinoid levels by administration of the fatty acid amide hydrolase inhibitor URB597 could modulate joint nociception in 2 rodent models of osteoarthritis (OA). OA‐like changes were induced in male Wistar rats by intra‐articular injection of monoiodoacetate, while Dunkin‐Hartley guinea pigs (age 9–12 months) develop OA naturally and were used as a model of spontaneous OA. Joint nociception was measured by recording electrophysiologically from knee joint primary afferents in response to noxious hyper‐rotation of the joint before and after close intra‐arterial injection of URB597 (0.03 mg; 0.1 mL bolus); the CB1 receptor antagonist AM251 (1 mg/kg intraperitoneally) or the CB2 receptor antagonist AM630 (1 mg/kg intraperitoneally). The effect of systemic URB597 administration (5 mg/kg) on joint pain perception in the monoiodoacetate model was determined by hindlimb incapacitance. Peripheral injection of URB597 caused afferent firing rate to be significantly reduced by up to 56% in the rat OA model and by up to 69% in the guinea pig OA model. Systemic co‐administration of AM251, but not AM630, abolished the antinociceptive effect of URB597 in both models. URB597 had no effect in saline‐injected control rat joints or in nonarthritic guinea pigs. Systemic URB597 administration significantly reduced hindlimb incapacitance in monoiodoacetate joints and co‐administration of the CB1 antagonist abolished this effect. Local injection of URB597 into OA knee joints reduces mechanonociception and pain, and this response is mediated by CB1 receptors. Targeting endocannabinoid‐metabolizing enzymes in the peripheral nervous system could offer novel therapeutic approaches for the treatment of OA pain. Peripheral blockade of endocannabinoid hydrolysis reduced mechanonociception and pain in osteoarthritic knee joints.


Journal of Medicinal Chemistry | 2013

Selective cannabinoid receptor type 2 (CB2) agonists: optimization of a series of purines leading to the identification of a clinical candidate for the treatment of osteoarthritic pain.

Sean P. Hollinshead; Michael Wade Tidwell; John R. Palmer; Rossella Guidetti; Adam J. Sanderson; Michael P. Johnson; Mark Chambers; J.L. Oskins; Robert E. Stratford; Peter Charles Astles

A focused screening strategy identified thienopyrimidine 12 as a cannabinoid receptor type 2 agonist (hCB2) with moderate selectivity over the hCB1 receptor. This initial hit suffered from poor in vitro metabolic stability and high in vivo clearance. Structure-activity relationships describe the optimization and modification to a new more polar series of purine CB2 agonists. Examples from this novel scaffold were found to be highly potent and fully efficacious agonists of the human CB2 receptor with excellent selectivity against CB1, often having no CB1 agonist activity at the highest concentration measured (>100 μM). Compound 26 is a centrally penetrant molecule which possesses good biopharmaceutical properties, is highly water-soluble, and demonstrates robust oral activity in rodent models of joint pain. In addition, the peripherally restricted molecule 22 also demonstrated significant efficacy in the same analgesic model of rodent inflammatory pain.


Journal of Pharmacology and Experimental Therapeutics | 2016

Identification and Characterization of Novel Microsomal Prostaglandin E Synthase-1 Inhibitors for Analgesia

Srinivasan Chandrasekhar; Anita Harvey; Xiao-Peng Yu; Mark Chambers; J.L. Oskins; C. Lin; Thomas W. Seng; Stefan J. Thibodeaux; Bryan H. Norman; Norman E. Hughes; Matthew A. Schiffler; Matthew Joseph Fisher

Prostaglandin (PG) E2 plays a critical role in eliciting inflammation. Nonsteroidal anti-inflammatory drugs and selective inhibitors of cyclooxygenase, which block PGE2 production, have been used as key agents in treating inflammation and pain associated with arthritis and other conditions. However, these agents have significant side effects such as gastrointestinal bleeding and myocardial infarction, since they also block the production of prostanoids that are critical for other normal physiologic functions. Microsomal prostaglandin E2 synthase-1 is a membrane-bound terminal enzyme in the prostanoid pathway, which acts downstream of cyclooxygenase 2 and is responsible for PGE2 production during inflammation. Thus, inhibition of this enzyme would be expected to block PGE2 production without inhibiting other prostanoids and would provide analgesic efficacy without the side effects. In this report, we describe novel microsomal prostaglandin E2 synthase-1 inhibitors that are potent in blocking PGE2 production and are efficacious in a guinea pig monoiodoacetate model of arthralgia. These molecules may be useful in treating the signs and symptoms associated with arthritis.


ACS Medicinal Chemistry Letters | 2016

Novel Autotaxin Inhibitors for the Treatment of Osteoarthritis Pain: Lead Optimization via Structure-Based Drug Design

Spencer Brian Jones; Lance Allen Pfeifer; Thomas John Bleisch; Thomas James Beauchamp; Jim D. Durbin; V. Joseph Klimkowski; Norman E. Hughes; Christopher John Rito; Yen Dao; Joseph Michael Gruber; Hai Bui; Mark Chambers; Srinivasan Chandrasekhar; C. Lin; Denis J. McCann; Daniel R. Mudra; J.L. Oskins; Craig Swearingen; Kannan Thirunavukkarasu; Bryan H. Norman

In an effort to develop a novel therapeutic agent aimed at addressing the unmet need of patients with osteoarthritis pain, we set out to develop an inhibitor for autotaxin with excellent potency and physical properties to allow for the clinical investigation of autotaxin-induced nociceptive and neuropathic pain. An initial hit identification campaign led to an aminopyrimidine series with an autotaxin IC50 of 500 nM. X-ray crystallography enabled the optimization to a lead compound that demonstrated favorable potency (IC50 = 2 nM), PK properties, and a robust PK/PD relationship.


Bioorganic & Medicinal Chemistry Letters | 2016

Identification and biological activity of 6-alkyl-substituted 3-methyl-pyridine-2-carbonyl amino dimethyl-benzoic acid EP4 antagonists.

Maria-Jesus Blanco; Tatiana Vetman; Srinivasan Chandrasekhar; Matthew Joseph Fisher; Anita Harvey; Steven L. Kuklish; Mark Chambers; C. Lin; Daniel R. Mudra; J.L. Oskins; Xushan Wang; Xiao-Peng Yu; Alan M. Warshawsky

Continued SAR optimization of a series of 3-methylpyridine-2-carbonyl amino-2,4-dimethyl-benzoic acid led to the selection of compound 4f for clinical studies. Compound 4f showed an IC50 of 123nM for inhibition of PGE2-induced TNFα reduction in an ex vivo LPS-stimulated human whole blood assay (showing >10-fold increase over clinical compound CJ-023,423). Pharmacokinetic profile, selectivity and in vivo efficacy comparing 4f to NSAID diclofenac in the monoiodoacetic acid (MIA) pain model and adjuvant induced arthritis (AIA) inflammatory model are included.


Bioorganic & Medicinal Chemistry Letters | 2016

Discovery of potent aryl-substituted 3-[(3-methylpyridine-2-carbonyl) amino]-2,4-dimethyl-benzoic acid EP4 antagonists with improved pharmacokinetic profile.

Maria-Jesus Blanco; Tatiana Vetman; Srinivasan Chandrasekhar; Matthew Joseph Fisher; Anita Harvey; Mark Chambers; C. Lin; Daniel R. Mudra; J.L. Oskins; Xushan Wang; Xiao-Peng Yu; Alan M. Warshawsky

Two new series of EP4 antagonists containing a 3-methylaryl-2-carbonyl core have been identified. One series has a 3-substituted-phenyl core, while the other one incorporates a 3-substituted pyridine. Both series led to compounds with potent activity in functional and human whole blood (hWB) assays. In the pyridine series, compound 7a was found to be a highly potent and selective EP4 antagonist, with suitable rat and dog pharmacokinetic profiles.


Pharmacology Research & Perspectives | 2017

Analgesic and anti-inflammatory properties of novel, selective, and potent EP4 receptor antagonists

Srinivasan Chandrasekhar; Xiao-Peng Yu; Anita Harvey; J.L. Oskins; C. Lin; Xushan Wang; Maria-Jesus Blanco; Matthew Joseph Fisher; Steven L. Kuklish; Matthew A. Schiffler; Tatiana Vetman; Alan M. Warshawsky; Jeremy Schulenburg York; Alison M. Bendele; Mark Chambers

Prostaglandin (PG) E2 is the key driver of inflammation associated with arthritic conditions. Inhibitors of PGE2 production (NSAIDs and Coxibs) are used to treat these conditions, but carry significant side effect risks due to the inhibition of all prostanoids that play important physiological function. The activities of PGE2 are transduced through various receptor sub‐types. Prostaglandin E2 type 4 receptor (EP4) is associated with the development of inflammation and autoimmunity. We therefore are interested in identifying novel EP4 antagonists to treat the signs and symptoms of arthritis without the potential side effects of PGE2 modulators such as NSAIDs and Coxibs. Novel EP4 antagonists representing distinct chemical scaffolds were identified using a variety of in vitro functional assays and were shown to be selective and potent. The compounds were shown to be efficacious in animal models of analgesia, inflammation, and arthritis.


Bioorganic & Medicinal Chemistry Letters | 2016

Identification of potent and selective retinoic acid receptor gamma (RARγ) antagonists for the treatment of osteoarthritis pain using structure based drug design.

Norman E. Hughes; Thomas John Bleisch; Scott Alan Jones; Timothy I. Richardson; Robert Anthony Doti; Yong Wang; Stephanie L. Stout; Gregory L. Durst; Mark Chambers; J.L. Oskins; C. Lin; Lisa A. Adams; Todd J. Page; Robert J. Barr; Richard W. Zink; Harold E. Osborne; Chahrzad Montrose-Rafizadeh; Bryan H. Norman

A series of triaryl pyrazoles were identified as potent pan antagonists for the retinoic acid receptors (RARs) α, β and γ. X-ray crystallography and structure-based drug design were used to improve selectivity for RARγ by targeting residue differences in the ligand binding pockets of these receptors. This resulted in the discovery of novel antagonists which maintained RARγ potency but were greater than 500-fold selective versus RARα and RARβ. The potent and selective RARγ antagonist LY2955303 demonstrated good pharmacokinetic properties and was efficacious in the MIA model of osteoarthritis-like joint pain. This compound demonstrated an improved margin to RARα-mediated adverse effects.


Osteoarthritis and Cartilage | 2014

Development of a novel antibody to calcitonin gene-related peptide for the treatment of osteoarthritis-related pain

Robert J. Benschop; E.C. Collins; R.J. Darling; B.W. Allan; D. Leung; E.M. Conner; J. Nelson; B. Gaynor; J. Xu; X.-F. Wang; R.A. Lynch; B. Li; D. McCarty; J.L. Oskins; C. Lin; K.W. Johnson; Mark Chambers


Osteoarthritis and Cartilage | 2017

Lysophosphatidic acid provides a missing link between osteoarthritis and joint neuropathic pain

Jason J. McDougall; S. Albacete; N. Schuelert; P.G. Mitchell; C. Lin; J.L. Oskins; H.H. Bui; Mark Chambers

Collaboration


Dive into the J.L. Oskins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Lin

Eli Lilly and Company

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge