Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J.L. Venero is active.

Publication


Featured researches published by J.L. Venero.


Nature | 2011

Caspase signalling controls microglia activation and neurotoxicity

Miguel Angel Burguillos; Tomas Deierborg; Edel Kavanagh; Annette Persson; Nabil Hajji; Albert Garcia-Quintanilla; Josefina Cano; Patrik Brundin; Elisabet Englund; J.L. Venero; Bertrand Joseph

Activation of microglia and inflammation-mediated neurotoxicity are suggested to play a decisive role in the pathogenesis of several neurodegenerative disorders. Activated microglia release pro-inflammatory factors that may be neurotoxic. Here we show that the orderly activation of caspase-8 and caspase-3/7, known executioners of apoptotic cell death, regulate microglia activation through a protein kinase C (PKC)-δ-dependent pathway. We find that stimulation of microglia with various inflammogens activates caspase-8 and caspase-3/7 in microglia without triggering cell death in vitro and in vivo. Knockdown or chemical inhibition of each of these caspases hindered microglia activation and consequently reduced neurotoxicity. We observe that these caspases are activated in microglia in the ventral mesencephalon of Parkinson’s disease (PD) and the frontal cortex of individuals with Alzheimer’s disease (AD). Taken together, we show that caspase-8 and caspase-3/7 are involved in regulating microglia activation. We conclude that inhibition of these caspases could be neuroprotective by targeting the microglia rather than the neurons themselves.


Neurobiology of Disease | 2000

The Single Intranigral Injection of LPS as a New Model for Studying the Selective Effects of Inflammatory Reactions on Dopaminergic System

Antonio J. Herrera; Angélica Castaño; J.L. Venero; Josefina Cano; A. Machado

We have injected lipopolysaccharide (LPS) into the nigrostriatal pathway of rats in order to address the role of inflammation in Parkinsons disease (PD). LPS induced a strong macrophage/microglial reaction in Substantia nigra (SN), with a characteristic clustering of macrophage cells around blood-vessels. The SN was far more sensitive than the striatum to the inflammatory stimulus. Moreover, only the dopaminergic neurons of the SN were affected, with no detectable damage to either the GABAergic or the serotoninergic neurons. The damage to the DA neurons in the SN was permanent, as observed 1 year postinjection. Unlike the direct death of dopaminergic neurons caused by agents as MPP(+) or 6-OHDA, LPS seems to cause indirect death due to inflammatory reaction. Therefore, we suggest that the injection of a single dose of LPS within the SN is an interesting model for studying the selective effects of inflammatory reaction on dopaminergic system and also potentially useful for studying PD.


Progress in Neurobiology | 2001

Aquaporins in the central nervous system.

J.L. Venero; Marisa Vizuete; Alberto Machado; Josefina Cano

In this review, we have tried to summarize most available data dealing with the aquaporin (AQP) family of water channels in the CNS. Two aquaporins have been identified so far in the CNS, AQP1 and AQP4. AQP1 is restricted to the choroid plexus of the lateral ventricles, which raises a role for this aquaporin in cerebrospinal fluid formation. AQP4 is the predominant water channel in the brain and it is more widely distributed than originally believed, with a marked prevalence over periventricular areas. In the first part of this review, we examine the complete distribution pattern of AQP4 in the CNS including its rostro-caudal localization to end with its subcellular location. After discussing scarce data dealing with regulation of aquaporins in the CNS, we focus in potential roles for aquaporins. Novel recent data highlights very important roles for this aquaporin in the normal and pathological brain including, among others, role in potassium buffering, body fluid homeostasis, central osmoreception and development and restoration of brain edema.


Neurobiology of Disease | 2004

Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood-brain barrier, and damage in the nigral dopaminergic system.

Mayka Tomás-Camardiel; Inmaculada Rite; Antonio J. Herrera; Rocío M. de Pablos; Josefina Cano; Alberto Machado; J.L. Venero

We have evaluated the potential neuroprotectant activity of minocycline in an animal model of Parkinsons disease induced by intranigral injection of lipopolysaccharide. Minocycline treatment was very effective in protecting number of nigral dopaminergic neurons and loss of reactive astrocytes at 7 days postlesion. Evaluation of microglia revealed that minocycline treatment highly prevented the lipopolysaccharide-induced activation of reactive microglia as visualized by OX-42 and OX-6 immunohistochemistry. Short-term RT-PCR analysis demonstrated that minocycline partially prevented the lipopolysaccharide-induced increases of mRNA levels for interleukin-1alpha and tumor necrosis factor-alpha. In addition, lipopolysaccharide highly induced protein nitration as seen by 3-nitrotyrosine immunoreactivity in the ventral mesencephalon. Minocycline treatment strongly diminished the extent of 3-nitrotyrosine immunoreactivity. We also found a direct correlation between location of IgG immunoreactivity-a marker of blood-brain barrier disruption-and neurodegenerative processes including death of nigral dopaminergic cells and reactive astrocytes. There was also a precise spatial correlation between disruption of blood-brain barrier and 3-nitrotyrosine immunoreactivity. We discuss potential involvement of lipopolysaccharide-induced formation of peroxynitrites and cytokines in the pathological events in substantia nigra in response to inflammation. If inflammation is proved to be involved in the ethiopathology of Parkinsons disease, our data support the use of minocycline in parkinsonian patients.


The Journal of Neuroscience | 2006

Stress Increases Vulnerability to Inflammation in the Rat Prefrontal Cortex

R. M. de Pablos; Ruth F. Villarán; Sandro Argüelles; Antonio J. Herrera; J.L. Venero; Antonio Ayala; J. Cano; A. Machado

Inflammation could be involved in some neurodegenerative disorders that accompany signs of inflammation. However, because sensitivity to inflammation is not equal in all brain structures, a direct relationship is not clear. Our aim was to test whether some physiological circumstances, such as stress, could enhance susceptibility to inflammation in the prefrontal cortex (PFC), which shows a relative resistance to inflammation. PFC is important in many brain functions and is a target for some neurodegenerative diseases. We induced an inflammatory process by a single intracortical injection of 2 μg of lipopolysaccharide (LPS), a potent proinflammogen, in nonstressed and stressed rats. We evaluated the effect of our treatment on inflammatory markers, neuronal populations, BDNF expression, and behavior of several mitogen-activated protein (MAP) kinases and the transcription factor cAMP response element-binding protein. Stress strengthens the changes induced by LPS injection: microglial activation and proliferation with an increase in the levels of the proinflammatory cytokine tumor necrosis factor-α; loss of cells such as astroglia, seen as loss of glial fibrillary acidic protein immunoreactivity, and neurons, studied by neuronal-specific nuclear protein immunohistochemistry and GAD67 and NMDA receptor 1A mRNAs expression by in situ hybridization. A significant increase in the BDNF mRNA expression and modifications in the levels of MAP kinase phosphorylation were also found. In addition, we observed a protective effect from RU486 [mifepristone (11β-[p-(dimethylamino)phenyl]-17β-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one)], a potent inhibitor of the glucocorticoid receptor activation. All of these data show a synergistic effect between inflammation and stress, which could explain the relationship described between stress and some neurodegenerative pathologies.


Neuroscience | 1999

Detailed localization of aquaporin-4 messenger RNA in the CNS : Preferential expression in periventricular organs

J.L. Venero; Marisa Vizuete; Ilundain A; Alberto Machado; Miriam Echevarría; Josefina Cano

We have performed a detailed in situ hybridization study of the distribution of aquaporin-4 messenger RNA in the CNS. Contrary to expectation, we demonstrate that aquaporin-4 is ubiquitously expressed in the CNS. Strong hybridization labeling was detected in multiple olfactory areas, cortical cells, medial habenular nucleus, bed nucleus of the stria terminalis, tenia tecta, pial surface, pontine nucleus, hippocampal formation and multiple thalamic and hypothalamic areas. A low but significant hybridization signal was found, among others, in the choroid plexus of the lateral ventricles, ependymal cells, dorsal raphe and cerebellum. Overall, a preferential distribution of aquaporin-4 messenger RNA-expressing cells was evident in numerous periventricular organs. From the distribution study, the presence of aquaporin-4 messenger RNA-expressing cells in neuronal layers was evident in neuronal layers including the CA1 -CA3 hippocampal pyramidal cells, granular dentate cells and cortical cells. Further evidence of neuronal expression comes from the semicircular arrangement of aquaporin-4 messenger RNA-expressing cells in the bed nucleus of the stria terminalis and medial habenular nucleus exhibiting Nissl-stained morphological features typical of neurons. Combined glial fibrillary acidic protein immunohistochemistry and aquaporin-4 messenger RNA in situ hybridization demonstrated that aquaporin-4 messenger RNA is expressed by glial fibrillary acidic protein-lacking cells. We conclude that aquaporin-4 messenger RNA is present in a collection of structures typically involved in the regulation of water and sodium intake and that aquaporin-4 water channels could be the osmosensor mechanism responsible for detecting changes in cell volume by these cells.


Neurobiology of Aging | 2011

Stress is critical for LPS-induced activation of microglia and damage in the rat hippocampus.

Ana M. Espinosa-Oliva; R. M. de Pablos; Ruth F. Villarán; Sandro Argüelles; J.L. Venero; A. Machado; Josefina Cano

The hippocampus is insensitive to strong inflammatory stimulus under normal conditions and one of the most severely affected areas in Alzheimers disease. We have analyzed the effect of chronic stress for 9 days in the hippocampus unilaterally injected with LPS. In non-stressed rats, LPS injection failed to activate microglia although a subset of degenerating cells in the CA1 area was evident. This effect was not accompanied by loss of Neu-N positive neurons in the CA1 area. In stressed rats, LPS injection had a dramatic effect in activating microglia along with astrogliosis and BDNF mRNA induction. NeuN immunostaining demonstrated a loss of about 50% of CA1 pyramidal neurons under these conditions. Fluoro jade B histochemistry demonstrated the presence of degenerating cells in most of CA1 area. Mechanistically, combination of chronic stress and LPS resulted in prominent activation of MAPKs including JNK, p38 and ERK clearly different from LPS injection in controls. Further, LPS+stress induced a dramatic decrease in phosphorylated levels of both Akt and CREB, which fully supports a consistent deleterious state in the hippocampal system under these conditions. Treatment with RU486, a potent inhibitor of glucocorticoid receptor activation, significantly protected animals against the deleterious effects observed in LPS-stressed animals.


Journal of Neurochemistry | 2007

Blood–brain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons

Inmaculada Rite; Alberto Machado; Josefina Cano; J.L. Venero

We have evaluated the possibility that changes in the vascular system may constitute a contributing factor for the death of nigral dopaminergic neurons in Parkinson’s disease. Thus, we have employed intranigral injections of vascular endothelial growth factor (VEGF), the most potent inducer of blood–brain barrier (BBB) permeability. A single dose of 1 μg of VEGF, chosen from a dose‐response study, highly disrupted the BBB in the ventral mesencephalon in a time‐dependent manner. A strong regional correlation between BBB disruption and loss of tyrosine hydroxylase‐positive neurons was evident. Moreover, Fluoro‐Jade B labelling showed the presence of dying neurons in the substantia nigra in response to VEGF injection. High number of TUNEL‐positive nuclei was observed in this area along with activation of caspase 3 within nigral dopaminergic neurons. Analysis of the glial population demonstrated a strong inflammatory response and activation of astroglia in response to BBB disruption. We conclude that disruption of the BBB may be a causative factor for degeneration of nigral dopaminergic neurons.


Journal of Neuroscience Research | 2005

Blood-brain barrier disruption highly induces aquaporin-4 mRNA and protein in perivascular and parenchymal astrocytes : Protective effect by estradiol treatment in ovariectomized animals

Mayka Tomás-Camardiel; J.L. Venero; Antonio J. Herrera; R. M. de Pablos; J.A. Pintor-Toro; A. Machado; Josefina Cano

Strong evidence involves aquaporin‐4 (AQP4) in the physiopathology of brain edema. Two major points remain unsolved: (1) the capacity of perivascular glial cells to regulate AQP4 in response to disruption of the blood–brain barrier (BBB); and (2) the potential beneficial role of AQP4 in the clearance of brain edema. We used intraparenchymal injection of lipopolysaccharide (LPS) as an efficient model to induce BBB disruption. This was monitored by IgG extravasation and AQP4 was studied at the mRNA and protein level. The first signs of BBB disruption coincided with strong induction of AQP4 mRNA in perivascular glial cells. At the early phase, estradiol treatment highly prevented the LPS‐induced disruption of the BBB and the induction of AQP4. Efficient clearance of vasogenic edema is supposed to occur once BBB is restored. This phase coincided with high induction of AQP4 mRNA in parenchymal reactive astrocytes and perivascular glial processes. High levels of AQP4 mRNA may be beneficial under these conditions. Our data may clarify why estradiol treatment reduces mortality in conditions typically associated with edema formation, like stroke.


Neuroscience | 1994

Expression of neurotrophin and trk receptor genes in adult rats with fimbria transections : effect of intraventricular nerve growth factor and brain-derived neurotrophic factor administration

J.L. Venero; Beat Knusel; Klaus D. Beck; Franz Hefti

The expression of the specific trk receptors for nerve growth factor and brain-derived neurotrophic factor (trkA and trkB) has been assayed by messenger RNA in situ hybridization in adult rats with partial fimbrial transections along with intraventricular treatment of nerve growth factor or brain-derived neurotrophic factor. In the forebrain, specific hybridization labeling for trkA messenger RNA showed an identical pattern to that of choline acetyltransferase messenger RNA, supporting the view that trkA expression is confined to the cholinergic population in the basal forebrain and the cholinergic interneurons in the striatum. After partial unilateral transections of the fimbria there was a progressive loss of choline acetyltransferase and trkA messenger RNA expression in the septal region ipsilateral to the lesion. Daily intraventricular administration of brain-derived neurotrophic factor or nerve growth factor partially prevented the lesion-induced decrease in the levels of both messengers, the latter being more effective than the former. Grain count analysis of individual cells was used to test whether the two factors upregulated choline acetyltransferase or trkA expression in individual cells surviving the lesion. Brain-derived neurotrophic factor treatment failed to induce any change in the levels of both messengers per neuron in the septal area. In contrast, daily intraventricular administration of nerve growth factor upregulated both choline acetyltransferase and trkA messenger RNA expression in individual neurons. This upregulation was evident on ipsilateral and contralateral sides, suggesting that nerve growth factor is able to upregulate these markers in intact and injured cholinergic cells in the basal forebrain. Similar to the situation in the septum, brain-derived neurotrophic factor did not upregulate choline acetyltransferase or trkA expression in the striatum. However, nerve growth factor administration strongly upregulated choline acetyltransferase messenger RNA expression by individual cholinergic neurons of the striatum. A medial to lateral gradient decrease in this upregulation was detected in the striatum ipsilateral to the side of administration, suggesting a limited diffusion of the nerve growth factor protein from the ventricle into brain parenchyma. In contrast to the strong effect on choline acetyltransferase expression, nerve growth factor treatment was ineffective in altering trkA messenger RNA in the striatum. The contrasting findings between septum and striatum suggest different regulatory mechanisms for trkA messenger RNA expression in the two cholinergic populations. Since nerve growth factor was found to upregulate the expression of its trkA receptor, we tested whether brain-derived neurotrophic factor administration had similar effects on the regulation of its trkB receptor.(ABSTRACT TRUNCATED AT 400 WORDS)

Collaboration


Dive into the J.L. Venero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio J. Herrera

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rocío M. de Pablos

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ana M. Espinosa-Oliva

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge