Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. L. Whitwell is active.

Publication


Featured researches published by J. L. Whitwell.


Neurology | 2006

Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP

K. A. Josephs; R. C. Petersen; D. S. Knopman; B. F. Boeve; J. L. Whitwell; Joseph R. Duffy; Joseph E. Parisi; Dennis W. Dickson

Objective: To examine the relationship between early clinical features, pathologies, and biochemistry of the frontotemporal lobar degenerations (FTLDs), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). Methods: The authors conducted pathologic reexamination with the most recent immunohistochemistry of all cases diagnosed with FTLD, PSP, and CBD between 1970 and 2004. The authors also reviewed the early clinical features for clinical diagnosis and application of published research criteria. Results: Of 127 cases analyzed, 57 had a pathologic diagnosis of FTLD, 49 PSP, and 21 CBD. Of these, 38 were clinically reclassified as frontal variant frontotemporal dementia (FTD), 13 as progressive non-fluent aphasia (PNFA), 21 as CBD-like, 33 as PSP-like, and 13 with frontotemporal dementia with coexisting motor neuron disease (FTD-MND). The authors were unable to classify nine cases. All cases of FTD-MND were tau-negative and had pathologic evidence of motor neuron degeneration. All cases classified as PSP-like or CBD-like had tau-positive pathology. Of the 13 cases with PNFA, PSP and CBD accounted for almost 70% of the cases, while FTD was almost equally divided between tau-positive and tau-negative diseases. Conclusion: Frontotemporal lobar degeneration, corticobasal degeneration (CBD), and progressive supranuclear palsy (PSP) have overlapping clinical features. The prediction of tau-positive pathology from a CBD or PSP-like presentation is good, while the frontotemporal dementia (FTD)-motor neuron disease syndrome almost certainly predicts motor neuron degeneration. Surprisingly, PSP and CBD accounted for most cases classified as progressive non-fluent aphasia. Frontal variant FTD is an unpredictable disease in terms of its biochemistry.


Neurology | 2008

MRI correlates of neurofibrillary tangle pathology at autopsy: A voxel-based morphometry study

J. L. Whitwell; K. A. Josephs; Melissa E. Murray; Kejal Kantarci; Scott Przybelski; S. D. Weigand; Prashanthi Vemuri; Matthew L. Senjem; Joseph E. Parisi; D. S. Knopman; B. F. Boeve; R. C. Petersen; Dennis W. Dickson; C. R. Jack

Background: Neurofibrillary tangles (NFTs), composed of hyperphosphorylated tau proteins, are one of the pathologic hallmarks of Alzheimer disease (AD). We aimed to determine whether patterns of gray matter atrophy from antemortem MRI correlate with Braak staging of NFT pathology. Methods: Eighty-three subjects with Braak stage III through VI, a pathologic diagnosis of low- to high-probability AD, and MRI within 4 years of death were identified. Voxel-based morphometry assessed gray matter atrophy in each Braak stage compared with 20 pathologic control subjects (Braak stages 0 through II). Results: In pairwise comparisons with Braak stages 0 through II, a graded response was observed across Braak stages V and VI, with more severe and widespread loss identified at Braak stage VI. No regions of loss were identified in Braak stage III or IV compared with Braak stages 0 through II. The lack of findings in Braak stages III and IV could be because Braak stage is based on the presence of any NFT pathology regardless of severity. Actual NFT burden may vary by Braak stage. Therefore, tau burden was assessed in subjects with Braak stages 0 through IV. Those with high tau burden showed greater gray matter loss in medial and lateral temporal lobes than those with low tau burden. Conclusions: Patterns of gray matter loss are associated with neurofibrillary tangle (NFT) pathology, specifically with NFT burden at Braak stages III and IV and with Braak stage itself at higher stages. This validates three-dimensional patterns of atrophy on MRI as an approximate in vivo surrogate indicator of the full brain topographic representation of the neurodegenerative aspect of Alzheimer disease pathology.


Neurology | 2010

Gray and white matter water diffusion in the syndromic variants of frontotemporal dementia

J. L. Whitwell; Ramesh Avula; Matthew L. Senjem; Kejal Kantarci; S. D. Weigand; Ali R. Samikoglu; H. A. Edmonson; Prashanthi Vemuri; D. S. Knopman; B. F. Boeve; R. C. Petersen; K. A. Josephs; C. R. Jack

Objective: To use diffusion tensor imaging (DTI) to assess gray matter and white matter tract diffusion in behavioral variant frontotemporal dementia (bvFTD), semantic dementia (SMD), and progressive nonfluent aphasia (PNFA). Methods: This was a case-control study where 16 subjects with bvFTD, 7 with PNFA, and 4 with SMD were identified and matched by age and gender to 19 controls. All subjects had 3-T head MRI with a DTI sequence with diffusion encoding in 21 directions. Gray matter mean diffusivity (MD) was assessed using a region-of-interest (ROI) and voxel-level approach, and voxel-based morphometry was used to assess patterns of gray matter loss. White matter tract diffusivity (fractional anisotropy and radial diffusivity) was assessed by placing ROIs on tracts of interest. Results: In bvFTD, increased gray matter MD and gray matter loss were identified bilaterally throughout frontal and temporal lobes, with abnormal diffusivity observed in white matter tracts that connect to these regions. In SMD, gray matter loss and increased MD were identified predominantly in the left temporal lobe, with tract abnormalities observed in the inferior longitudinal fasciculus and uncinate fasciculus. In PNFA, gray matter loss and increased MD were observed in left inferior frontal lobe, insula, and supplemental motor area, with tract abnormalities observed in the superior longitudinal fasciculus. Conclusions: The diffusivity of gray matter is increased in regions that are atrophic in frontotemporal dementia, suggesting disruption of the cytoarchitecture of remaining tissue. Furthermore, damage was identified in white matter tracts that interconnect these regions, supporting the hypothesis that these diseases involve different and specific brain networks.


Neurology | 2008

Abnormal TDP-43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype

Keith A. Josephs; J. L. Whitwell; D. S. Knopman; Wei Hu; D. A. Stroh; Matt Baker; Rosa Rademakers; B. F. Boeve; Joseph E. Parisi; Glenn E. Smith; R. J. Ivnik; R. C. Petersen; C. R. Jack; Dennis W. Dickson

Background: TAR DNA-binding protein 43 (TDP-43) is one of the major disease proteins in frontotemporal lobar degeneration with ubiquitin immunoreactivity. Approximately one-fourth of subjects with pathologically confirmed Alzheimer disease (AD) have abnormal TDP-43 (abTDP-43) immunoreactivity. The aim of this study was to determine whether subjects with pathologically confirmed AD and abTDP-43 immunoreactivity have distinct clinical, neuropsychological, imaging, or pathologic features compared with subjects with AD without abTDP-43 immunoreactivity. Methods: Eighty-four subjects were identified who had a pathologic diagnosis of AD, neuropsychometric testing, and volumetric MRI. Immunohistochemistry for TDP-43 was performed on sections of hippocampus and medial temporal lobe, and positive cases were classified into one of three types. Neuropsychometric data were collated and compared in subjects with and without abTDP-43 immunoreactivity. Voxel-based morphometry was used to assess patterns of gray matter atrophy in subjects with and without abTDP-43 immunoreactivity compared with age- and sex-matched controls. Results: Twenty-nine (34%) of the 84 AD subjects had abTDP-43 immunoreactivity. Those with abTDP-43 immunoreactivity were older at onset and death and performed worse on the Clinical Dementia Rating scale, Mini-Mental State Examination, and Boston Naming Test than subjects without abTDP-43 immunoreactivity. Subjects with and without abTDP-43 immunoreactivity had medial temporal and temporoparietal gray matter loss compared with controls; however, those with abTDP-43 immunoreactivity showed greater hippocampal atrophy. Multivariate logistic regression adjusting for age at death demonstrated that hippocampal sclerosis was the only pathologic predictor of abTDP-43 immunoreactivity. Conclusions: The presence of abnormal TDP-43 immunoreactivity is associated with a modified Alzheimer disease clinicopathologic and radiologic phenotype.


Neurology | 2010

Imaging correlates of pathology in corticobasal syndrome

J. L. Whitwell; C. R. Jack; Bradley F. Boeve; Joseph E. Parisi; J. E. Ahlskog; Daniel A. Drubach; Matthew L. Senjem; D. S. Knopman; R. C. Petersen; Dennis W. Dickson; K. A. Josephs

Background: Corticobasal syndrome (CBS) can be associated with different underlying pathologies that are difficult to predict based on clinical presentation. The aim of this study was to determine whether patterns of atrophy on imaging could be useful to help predict underlying pathology in CBS. Methods: This was a case-control study of 24 patients with CBS who had undergone MRI during life and came to autopsy. Pathologic diagnoses included frontotemporal lobar degeneration (FTLD) with TDP-43 immunoreactivity in 5 (CBS-TDP), Alzheimer disease (AD) in 6 (CBS-AD), corticobasal degeneration in 7 (CBS-CBD), and progressive supranuclear palsy in 6 (CBS-PSP). Voxel-based morphometry and atlas-based parcellation were used to assess atrophy across the CBS groups and compared to 24 age- and gender-matched controls. Results: All CBS pathologic groups showed gray matter loss in premotor cortices, supplemental motor area, and insula on imaging. However, CBS-TDP and CBS-AD showed more widespread patterns of loss, with frontotemporal loss observed in CBS-TDP and temporoparietal loss observed in CBS-AD. CBS-TDP showed significantly greater loss in prefrontal cortex than the other groups, whereas CBS-AD showed significantly greater loss in parietal lobe than the other groups. The focus of loss was similar in CBS-CBD and CBS-PSP, although more severe in CBS-CBD. Conclusions: Imaging patterns of atrophy in CBS vary according to pathologic diagnosis. Widespread atrophy points toward a pathologic diagnosis of FTLD-TDP or AD, with frontotemporal loss suggesting FTLD-TDP and temporoparietal loss suggesting AD. On the contrary, more focal atrophy predominantly involving the premotor and supplemental motor area suggests CBD or PSP pathology.


Neurology | 2009

Risk of dementia in MCI: Combined effect of cerebrovascular disease, volumetric MRI, and 1H MRS

Kejal Kantarci; S. D. Weigand; Scott Przybelski; Maria Shiung; J. L. Whitwell; Selamawit Negash; D. S. Knopman; B. F. Boeve; P. C. O'Brien; R. C. Petersen; C. R. Jack

Objective: To investigate the combined ability of hippocampal volumes, 1H magnetic resonance spectroscopy (MRS) metabolites, and cerebrovascular disease to predict the risk of progression to dementia in mild cognitive impairment (MCI). Methods: We identified 151 consecutively recruited subjects with MCI from the Mayo Clinic Alzheimer’s Disease Research Center and Patient Registry who underwent MRI and 1H MRS studies at baseline and were followed up with approximately annual clinical examinations. A multivariable proportional hazards model that considered all imaging predictors simultaneously was used to determine whether hippocampal volumes, posterior cingulate gyrus 1H MRS metabolites, white matter hyperintensity load, and presence of cortical and subcortical infarctions are complementary in predicting the risk of progression from MCI to dementia. Results: Seventy-five subjects with MCI progressed to dementia by last follow-up. The model that best predicted progression to dementia included age, sex, hippocampal volumes, N-acetylaspartate (NAA)/creatine (Cr) on 1H MRS, and cortical infarctions. Based on age- and sex-adjusted Kaplan–Meier plots, we estimated that by 3 years, 26% of the MCI patients with normal hippocampal volumes, NAA/Cr ratios >1 SD, and no cortical infarctions will progress to dementia, compared with 78% of the MCI patients with hippocampal atrophy, low NAA/Cr (≤1 SD), and cortical infarction. Conclusions: Multiple magnetic resonance (MR) markers of underlying dementia pathologies improve the ability to identify patients with prodromal dementia over a single MR marker, supporting the concept that individuals with multiple brain pathologies have increased odds of dementia compared with individuals with a single pathology.


Neurology | 2009

Voxel-based morphometry patterns of atrophy in FTLD with mutations in MAPT or PGRN

J. L. Whitwell; C. R. Jack; B. F. Boeve; Matthew L. Senjem; Matt Baker; Rosa Rademakers; R. J. Ivnik; D. S. Knopman; Zbigniew K. Wszolek; R. C. Petersen; K. A. Josephs

Objective: To compare patterns of gray matter loss in subjects with mutations in the progranulin (PGRN) gene to subjects with mutations in the microtubule-associated protein tau (MAPT) gene. Methods: We identified all subjects seen at the Mayo Clinic, Rochester, MN, who had screened positive for mutations in PGRN or MAPT and had a head MRI. Twelve cases with mutations in the PGRN gene were matched by time from disease onset to scan to 12 subjects with mutations in the MAPT gene. Voxel-based morphometry was used to assess patterns of gray matter loss in the PGRN and MAPT groups compared to a control cohort, and compared to each other. MAPT subjects were younger than the PGRN subjects; therefore, each group was also compared to a specific age-matched control group. Results: Both PGRN and MAPT groups showed gray matter loss in frontal, temporal, and parietal lobes compared to controls, although loss was predominantly identified in posterior temporal and parietal lobes in PGRN and anteromedial temporal lobes in MAPT. The MAPT group had greater loss compared to healthy subjects of the same age than the PGRN subjects when compared to healthy subjects of the same age. The MAPT subjects showed greater gray matter loss in the medial temporal lobes, insula, and putamen than the PGRN subjects. Conclusion: These results increase understanding of the biology of these disorders and suggest that patterns of atrophy on MRI may be useful to aid in the differentiation of groups of PGRN and MAPT mutation carriers.


Neurology | 2009

Two distinct subtypes of right temporal variant frontotemporal dementia

Keith A. Josephs; J. L. Whitwell; D. S. Knopman; B. F. Boeve; Prashanthi Vemuri; Matthew L. Senjem; Joseph E. Parisi; R. J. Ivnik; Dennis W. Dickson; R. C. Petersen; C. R. Jack

Background: Right temporal frontotemporal dementia (FTD) is an anatomic variant of FTD associated with relatively distinct behavioral and cognitive symptoms. We aimed to determine whether right temporal FTD is a homogeneous clinical, imaging, and pathologic/genetic entity. Methods: In this case-control study, 101 subjects with FTD were identified. Atlas-based parcellation generated temporal, frontal, and parietal grey matter volumes which were used to identify subjects with a right temporal dominant atrophy pattern. Clinical, neuropsychological, genetic, and neuropathologic features were reviewed. The subjects with right temporal FTD were grouped by initial clinical diagnosis and voxel-based morphometry was used to assess grey matter loss in the different groups, compared to controls, and each other. Results: We identified 20 subjects with right temporal FTD. Twelve had been initially diagnosed with behavioral variant FTD (bvFTD), and the other 8 with semantic dementia (SMD). Personality change and inappropriate behaviors were more frequent in the bvFTD group, while prosopagnosia, word-finding difficulties, comprehension problems, and topographagnosia were more frequent in the SMD group. The bvFTD group showed greater loss in frontal lobes than the SMD group. The SMD group showed greater fusiform loss than the bvFTD group. All 8 bvFTD subjects with pathologic/genetic diagnosis showed abnormalities in tau protein (7 with tau mutations), while all three SMD subjects with pathology showed abnormalities in TDP-43 (p = 0.006). Conclusions: We have identified 2 subtypes of right temporal variant frontotemporal dementia (FTD) allowing further differentiation of FTD subjects with underlying tau pathology from those with TDP-43 pathology.


Neurology | 2011

Altered functional connectivity in asymptomatic MAPT subjects A comparison to bvFTD

J. L. Whitwell; K. A. Josephs; Ramesh Avula; Nirubol Tosakulwong; Stephen D. Weigand; Matthew L. Senjem; Prashanthi Vemuri; David T. W. Jones; Jeffrey L. Gunter; Matt Baker; Zbigniew K. Wszolek; D. S. Knopman; Rosa Rademakers; R. C. Petersen; B. F. Boeve; C. R. Jack

Objective: To determine whether functional connectivity is altered in subjects with mutations in the microtubule associated protein tau (MAPT) gene who were asymptomatic but were destined to develop dementia, and to compare these findings to those in subjects with behavioral variant frontotemporal dementia (bvFTD). Methods: In this case-control study, we identified 8 asymptomatic subjects with mutations in MAPT and 8 controls who screened negative for mutations in MAPT. Twenty-one subjects with a clinical diagnosis of bvFTD were also identified and matched to 21 controls. All subjects had resting-state fMRI. In-phase functional connectivity was assessed between a precuneus seed in the default mode network (DMN) and a fronto-insular cortex seed in the salience network, and the rest of the brain. Atlas-based parcellation was used to assess functional connectivity and gray matter volume across specific regions of interest. Results: The asymptomatic MAPT subjects and subjects with bvFTD showed altered functional connectivity in the DMN, with reduced in-phase connectivity in lateral temporal lobes and medial prefrontal cortex, compared to controls. Increased in-phase connectivity was also observed in both groups in the medial parietal lobe. Only the bvFTD group showed altered functional connectivity in the salience network, with reduced connectivity in the fronto-insular cortex and anterior cingulate. Gray matter loss was observed across temporal, frontal, and parietal regions in bvFTD, but not in the asymptomatic MAPT subjects. Conclusions: Functional connectivity in the DMN is altered in MAPT subjects before the occurrence of both atrophy and clinical symptoms, suggesting that changes in functional connectivity are early features of the disease.


Neurology | 2005

Survival in two variants of tau-negative frontotemporal lobar degeneration: FTLD-U vs FTLD-MND

Keith A. Josephs; D. S. Knopman; J. L. Whitwell; B. F. Boeve; Joseph E. Parisi; R. C. Petersen; Dennis W. Dickson

Pathologic diagnoses in frontotemporal lobar degeneration (FTLD) include tau-positive FTLD and tau-negative FTLD. Two variants of tau-negative FTLD are FTLD with motor neuron disease (FTLD-MND) and FTLD with motor neuron disease type inclusions but without motor neuron disease (FTLD-U). An analysis of patient outcomes in these cases reveals that FTLD-MND has significantly shorter survival than FTLD-U, suggesting that FTLD-MND is a more aggressive disease process.

Collaboration


Dive into the J. L. Whitwell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge