Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Larkin is active.

Publication


Featured researches published by J. Larkin.


Science Translational Medicine | 2012

An Orally Active TRPV4 Channel Blocker Prevents and Resolves Pulmonary Edema Induced by Heart Failure

Kevin S. Thorneloe; Mui Cheung; Weike Bao; Hasan Alsaid; Stephen C. Lenhard; Ming-Yuan Jian; Melissa H. Costell; Kristeen Maniscalco-Hauk; John A. Krawiec; Alan R. Olzinski; Earl Gordon; Irina M. Lozinskaya; Lou Elefante; Pu Qin; Daniel S. Matasic; Chris James; James Tunstead; Brian T. Donovan; Lorena A. Kallal; Anna Waszkiewicz; Kalindi Vaidya; Elizabeth A. Davenport; J. Larkin; Mark Burgert; Linda N. Casillas; Robert W. Marquis; Guosen Ye; Hilary Schenck Eidam; Krista B. Goodman; John R. Toomey

Transient receptor potential vanilloid 4 (TRPV4) channels are expressed in human heart failure lungs, which can be blocked to prevent and resolve heart failure–induced pulmonary edema. Ion Channel Blockade Prevents Pulmonary Edema Heart failure affects not only the heart and vessels but also the lungs. As blood pressure builds up in the lung’s vessels, fluid leaks into the lungs. Treatment options are limited for these patients, mostly because the mechanism underlying pulmonary edema is unclear. Here, Thorneloe and colleagues implicate the activation of the transient receptor potential vanilloid 4 (TRPV4) ion channel in the onset of edema during heart failure and show that a small-molecule drug can prevent such leakage. Activation of the ion channel TRPV4 results in pulmonary edema in animal lungs. The authors first confirmed that TRPV4 was expressed in normal human lungs and then demonstrated that it was increased in lung tissue from patients with a history of congestive heart failure. Using a small-molecule screen, Thorneloe et al. discovered GSK2193874. In human cells in vitro and mouse lungs ex vivo, the small molecule effectively blocked TRPV4 channels to maintain endothelial (vessel) layer integrity. A related study by Huh et al. (this issue) shows that the drug indeed prevents vascular leakage of human cell cultures in vitro. The GSK2193874 analog GSK2263095 displayed similar activity in canine lungs ex vivo. In vivo in rat models of heart failure, the authors found that the drug was effective in both preventing and reversing pulmonary edema. The molecule only protected against lung permeability at high (pathological) pulmonary venous pressure. Thorneloe and colleagues showed that GSK2193874 blocked TRPV4 activity across species, including in human cells, without adversely affecting heart rate or arterial pressure. This suggests that TRPV4 blockers might be used therapeutically to treat patients with heart failure–induced pulmonary edema. Pulmonary edema resulting from high pulmonary venous pressure (PVP) is a major cause of morbidity and mortality in heart failure (HF) patients, but current treatment options demonstrate substantial limitations. Recent evidence from rodent lungs suggests that PVP-induced edema is driven by activation of pulmonary capillary endothelial transient receptor potential vanilloid 4 (TRPV4) channels. To examine the therapeutic potential of this mechanism, we evaluated TRPV4 expression in human congestive HF lungs and developed small-molecule TRPV4 channel blockers for testing in animal models of HF. TRPV4 immunolabeling of human lung sections demonstrated expression of TRPV4 in the pulmonary vasculature that was enhanced in sections from HF patients compared to controls. GSK2193874 was identified as a selective, orally active TRPV4 blocker that inhibits Ca2+ influx through recombinant TRPV4 channels and native endothelial TRPV4 currents. In isolated rodent and canine lungs, TRPV4 blockade prevented the increased vascular permeability and resultant pulmonary edema associated with elevated PVP. Furthermore, in both acute and chronic HF models, GSK2193874 pretreatment inhibited the formation of pulmonary edema and enhanced arterial oxygenation. Finally, GSK2193874 treatment resolved pulmonary edema already established by myocardial infarction in mice. These findings identify a crucial role for TRPV4 in the formation of HF-induced pulmonary edema and suggest that TRPV4 blockade is a potential therapeutic strategy for HF patients.


Journal of Medicinal Chemistry | 2012

Discovery of Highly Potent and Selective Small Molecule ADAMTS-5 Inhibitors That Inhibit Human Cartilage Degradation via Encoded Library Technology (ELT)

Hongfeng Deng; Heather O’Keefe; Christopher P. Davie; Kenneth Lind; Raksha A. Acharya; G. Joseph Franklin; J. Larkin; Rosalie Matico; Michael Neeb; Monique M. Thompson; Thomas Lohr; Jeffrey W. Gross; Paolo A. Centrella; Gary O’Donovan; Katie L. (Sargent) Bedard; Kurt van Vloten; Sibongile Mataruse; Steven R. Skinner; Svetlana L. Belyanskaya; Tiffany Y. Carpenter; Todd W. Shearer; Matthew A. Clark; John W. Cuozzo; Christopher C. Arico-Muendel; Barry Morgan

The metalloprotease ADAMTS-5 is considered a potential target for the treatment of osteoarthritis. To identify selective inhibitors of ADAMTS-5, we employed encoded library technology (ELT), which enables affinity selection of small molecule binders from complex mixtures by DNA tagging. Selection of ADAMTS-5 against a four-billion member ELT library led to a novel inhibitor scaffold not containing a classical zinc-binding functionality. One exemplar, (R)-N-((1-(4-(but-3-en-1-ylamino)-6-(((2-(thiophen-2-yl)thiazol-4-yl)methyl)amino)-1,3,5-triazin-2-yl)pyrrolidin-2-yl)methyl)-4-propylbenzenesulfonamide (8), inhibited ADAMTS-5 with IC(50) = 30 nM, showing >50-fold selectivity against ADAMTS-4 and >1000-fold selectivity against ADAMTS-1, ADAMTS-13, MMP-13, and TACE. Extensive SAR studies showed that potency and physicochemical properties of the scaffold could be further improved. Furthermore, in a human osteoarthritis cartilage explant study, compounds 8 and 15f inhibited aggrecanase-mediated (374)ARGS neoepitope release from aggrecan and glycosaminoglycan in response to IL-1β/OSM stimulation. This study provides the first small molecule evidence for the critical role of ADAMTS-5 in human cartilage degradation.


Osteoarthritis and Cartilage | 2015

Translational development of an ADAMTS-5 antibody for osteoarthritis disease modification

J. Larkin; Thomas Lohr; Louis Elefante; Jean Shearin; Rosalie Matico; Jui-Lan Su; Yu Xue; F. Liu; Caroline Genell; R.E. Miller; Phuong B. Tran; Anne-Marie Malfait; Curtis Maier; Christopher Matheny

OBJECTIVE/METHOD Aggrecanase activity, most notably ADAMTS-5, is implicated in pathogenic cartilage degradation. Selective monoclonal antibodies (mAbs) to both ADAMTS-5 and ADAMTS-4 were generated and in vitro, ex vivo and in vivo systems were utilized to assess target engagement, aggrecanase inhibition and modulation of disease-related endpoints with the intent of selecting a candidate for clinical development in osteoarthritis (OA). RESULTS Structural mapping predicts the most potent mAbs employ a unique mode of inhibition by cross-linking the catalytic and disintegrin domains. In a surgical mouse model of OA, both ADAMTS-5 and ADAMTS-4-specific mAbs penetrate cartilage following systemic administration, demonstrating access to the anticipated site of action. Structural disease modification and associated alleviation of pain-related behavior were observed with ADAMTS-5 mAb treatment. Treatment of human OA cartilage demonstrated a preferential role for ADAMTS-5 inhibition over ADAMTS-4, as measured by ARGS neoepitope release in explant cultures. ADAMTS-5 mAb activity was most evident in a subset of patient-derived tissues and suppression of ARGS neoepitope release was sustained for weeks after a single treatment in human explants and in cynomolgus monkeys, consistent with high affinity target engagement and slow ADAMTS-5 turnover. CONCLUSION This data supports a hypothesis set forth from knockout mouse studies that ADAMTS-5 is the major aggrecanase involved in cartilage degradation and provides a link between a biological pathway and pharmacology which translates to human tissues, non-human primate models and points to a target OA patient population. Therefore, a humanized ADAMTS-5-selective monoclonal antibody (GSK2394002) was progressed as a potential OA disease modifying therapeutic.


Osteoarthritis and Cartilage | 2016

Therapeutic effects of an anti-ADAMTS-5 antibody on joint damage and mechanical allodynia in a murine model of osteoarthritis

R.E. Miller; Phuong B. Tran; S. Ishihara; J. Larkin; Anne-Marie Malfait

OBJECTIVE The primary goal of this study was to test the disease-modifying effect of blocking a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5 with a neutralizing monoclonal antibody (mAb) starting 4 weeks after destabilization of the medial meniscus (DMM) in the mouse. We also investigated whether ADAMTS-5 blockade reversed mechanical allodynia and decreased monocyte chemoattractant protein (MCP)-1 production by dorsal root ganglia (DRG) cells. METHODS Ten-week old male C57BL/6 mice underwent DMM surgery and were either left untreated or treated with anti-ADAMTS-5 mAb or IgG2c isotype control mAb starting 4 weeks after surgery. Knees were collected for histopathology 4 or 12 weeks later. Mechanical allodynia was monitored biweekly in the ipsilateral hind paw through 16 weeks. DRG were collected and cultured 8 weeks after DMM for analysis of MCP-1 production. RESULTS By 4 weeks after DMM, mild cartilage degeneration was evident in the medial compartment, small osteophytes were present, and subchondral bone sclerosis was established. By 16 weeks after surgery, significant cartilage deterioration was apparent on the medial tibial plateaux and medial femoral condyles, osteophyte size had increased, and subchondral bone sclerosis was maintained. Treatment with ADAMTS-5 mAb from week 4 to 16 after surgery slowed cartilage degeneration and osteophyte growth but did not affect subchondral bone sclerosis. Moreover, ADAMTS-5 blockade resulted in temporary reversal of mechanical allodynia, which correlated with decreased MCP-1 production by cultured DRG cells. CONCLUSIONS This study suggests therapeutic efficacy of an ADAMTS-5 mAb in the DMM model, when therapy starts early in disease.


Journal of Biological Chemistry | 2014

Determinants of versican-V1 proteoglycan processing by the metalloproteinase ADAMTS5.

Simon J. Foulcer; Courtney M. Nelson; Maritza V. Quintero; Balagurunathan Kuberan; J. Larkin; María T. Dours-Zimmermann; Dieter R. Zimmermann; Suneel S. Apte

Background: The mechanisms of versican proteolysis by ADAMTS proteases are unknown. Results: The ADAMTS5 ancillary domain and specific chondroitin sulfate chains of versican are required for proteolysis. Conclusion: Docking between the ADAMTS5 ancillary domain and CS chains is a major mechanism underlying versican proteolysis. Proteolysis by ADAMTS1 has a similar requirement for GAG chains. Significance: The findings suggest strategies for blocking versican cleavage. Proteolysis of the Glu441-Ala442 bond in the glycosaminoglycan (GAG) β domain of the versican-V1 variant by a disintegrin-like and metalloproteinase domain with thrombospondin type 1 motif (ADAMTS) proteases is required for proper embryo morphogenesis. However, the processing mechanism and the possibility of additional ADAMTS-cleaved processing sites are unknown. We demonstrate here that if Glu441 is mutated, ADAMTS5 cleaves inefficiently at a proximate upstream site but normally does not cleave elsewhere within the GAGβ domain. Chondroitin sulfate (CS) modification of versican is a prerequisite for cleavage at the Glu441-Ala442 site, as demonstrated by reduced processing of CS-deficient or chondroitinase ABC-treated versican-V1. Site-directed mutagenesis identified the N-terminal CS attachment sites Ser507 and Ser525 as essential for processing of the Glu441-Ala442 bond by ADAMTS5. A construct including only these two GAG chains, but not downstream GAG attachment sites, was cleaved efficiently. Therefore, CS chain attachment to Ser507 and Ser525 is necessary and sufficient for versican proteolysis by ADAMTS5. Mutagenesis of Glu441 and an antibody to a peptide spanning Thr432-Gly445 (i.e. containing the scissile bond) reduced versican-V1 processing. ADAMTS5 lacking the C-terminal ancillary domain did not cleave versican, and an ADAMTS5 ancillary domain construct bound versican-V1 via the CS chains. We conclude that docking of ADAMTS5 with two N-terminal GAG chains of versican-V1 via its ancillary domain is required for versican processing at Glu441-Ala442. V1 proteolysis by ADAMTS1 demonstrated a similar requirement for the N-terminal GAG chains and Glu441. Therefore, versican cleavage can be inhibited substantially by mutation of Glu441, Ser507, and Ser525 or by an antibody to the region of the scissile bond.


Osteoarthritis and Cartilage | 2014

Quantitation OF ARGS aggrecan fragments in synovial fluid, serum and urine from osteoarthritis patients

F.M. Germaschewski; Christopher Matheny; J. Larkin; F. Liu; L.R. Thomas; J.S. Saunders; K. Sully; C. Whittall; Y. Boyle; G. Peters; N.M. Graham

OBJECTIVE To characterise ARGS neoepitope concentrations in various matrices from patients with knee osteoarthritis (OA) and assess performance of an immunoassay to facilitate clinical development of therapeutics affecting the A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5) pathway. DESIGN Matched sera, urine, and synovial fluid (SF) (surgical subjects only) were collected from healthy subjects, subjects with knee OA (non-surgical OA), and OA subjects undergoing total knee replacement (OA-TKR; n = 20 per group). Diurnal and inter-day variation was evaluated in the non-surgical OA group over 3 separate visits. Serum and urine samples were collected on two visits for the OA-TKR group with SF taken only at the time of surgery. ARGS neoepitope was quantitated using an optimized immunoassay. RESULTS Serum ARGS neoepitope concentrations were elevated in OA-TKR subjects compared to non-surgical OA subjects (P = 0.005) and healthy subjects (P = 0.0002). Creatinine corrected urinary ARGS neoepitope concentrations were more variable, but were also elevated in the OA-TKR subjects compared to healthy subjects (P = 0.008). No significant diurnal effect or inter-day variance was observed in serum or urine. Serum ARGS neoepitope concentrations correlated with age (P = 0.0252) but not with total number of joints with OA involvement. SF ARGS neoepitope concentrations correlated with Western Ontario and MacMaster OA Index (WOMAC) stiffness score (P = 0.04) whereas a weaker, non-significant trend towards positive correlation with combined WOMAC score and the number of concurrent joints was observed. CONCLUSIONS This study utilized a sensitive and robust assay to evaluate ARGS neoepitope concentrations in various matrices in OA patients and healthy volunteers. ARGS neoepitope appears promising as a prognostic/stratification marker to facilitate patient selection and as an early pharmacodynamic marker for OA therapeutic trials.


Journal of Biological Chemistry | 1996

Protein kinase Calpha contains two activator binding sites that bind phorbol esters and diacylglycerols with opposite affinities.

Simon J. Slater; Cojen Ho; Mary Beth Kelly; J. Larkin; Frank J. Taddeo; Mark D. Yeager; Christopher D. Stubbs


Osteoarthritis and Cartilage | 2017

Osteoarthritis Year in Review 2016: biomarkers (biochemical markers).

Ali Mobasheri; A.-C. Bay-Jensen; W.E. van Spil; J. Larkin; M.C. Levesque


Osteoarthritis and Cartilage | 2014

Therapeutic efficacy of anti-adamts5 antibody in the DMM model

R.E. Miller; Phuong B. Tran; S. Ishihara; J. Larkin; Anne-Marie Malfait


Osteoarthritis and Cartilage | 2014

The highs and lows of translational drug development: antibody-mediated inhibition of ADAMTS-5 for osteoarthritis disease modification

J. Larkin; Thomas Lohr; Louis Elefante; Jean Shearin; Rosalie Matico; J-L. Su; Y. Xue; F. Liu; E.I. Rossman; J. Renninger; X. Wu; L. Abberley; R.E. Miller; S. Foulcer; K.W. Chaudhary; Caroline Genell; D. Murphy; P.B. Tran; S. Apte; A-M. Malfait; Curtis Maier; Christopher Matheny

Collaboration


Dive into the J. Larkin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R.E. Miller

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne-Marie Malfait

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Phuong B. Tran

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

A.-C. Bay-Jensen

University of Southern Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge