Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Lindsay Whitton is active.

Publication


Featured researches published by J. Lindsay Whitton.


Nature Immunology | 2001

Functional avidity maturation of CD8 + T cells without selection of higher affinity TCR

Mark K. Slifka; J. Lindsay Whitton

Unlike B cells, T cells lack the capacity to improve the affinity of their antigen receptors by somatic mutation. It is, therefore, believed that optimization of cellular immunity is mediated almost exclusively through selective expansion of T cells bearing receptors with the highest affinity for antigen. We show here that T cell responsiveness to peptide (termed “functional avidity”) increased>50-fold during the early stages of viral infection. This indicated that T cells, like B cells, undergo extensive functional maturation in vivo. However, in contrast to B cells, maturation of the T cell response can occur without any appreciable change in T cell receptor affinity.


Clinical Microbiology Reviews | 2006

Molecular Mimicry, Bystander Activation, or Viral Persistence: Infections and Autoimmune Disease

Robert S. Fujinami; Matthias von Herrath; Urs Christen; J. Lindsay Whitton

SUMMARY Virus infections and autoimmune disease have long been linked. These infections often precede the occurrence of inflammation in the target organ. Several mechanisms often used to explain the association of autoimmunity and virus infection are molecular mimicry, bystander activation (with or without epitope spreading), and viral persistance. These mechanisms have been used separately or in various combinations to account for the immunopathology observed at the site of infection and/or sites of autoimmune disease, such as the brain, heart, and pancreas. These mechanisms are discussed in the context of multiple sclerosis, myocarditis, and diabetes, three immune-medicated diseases often linked with virus infections.


Nature | 1999

Rapid on/off cycling of cytokine production by virus-specific CD8 + T cells

Mark K. Slifka; Fernando Rodriguez; J. Lindsay Whitton

CD8-positive T cells protect the body against viral pathogens by two important mechanisms: production of antiviral cytokines and lysis of infected cells. Cytokine production can have both local and systemic consequences, whereas cytolytic activity is limited to infected cells that are in direct contact with T cells. Here we analyse activated CD8-positive T cells from mice infected with lymphocytic choriomeningitis virus and find that cytokines are not produced ex vivo in the absence of peptide stimulation, but that they are rapidly generated after T cells encounter viral peptides bound to the major histocompatibility complex. Remarkably, cytokine production ceases immediately upon dissociation of the T cells from their targets and resumes when antigenic contact is restored. In contrast to the ‘on/off/on’ cycling of cytokines, the pore-forming cytotoxic protein perforin is constitutively maintained. Our results indicate that there is differential expression of effector molecules according to whether the antiviral product is secreted (like cytokines) or stored inside the cell (like perforin). The ability to turn cytokines on and off while maintaining intracellular stores of perforin shows the versatility of the cellular immune response and provides a mechanism for maintaining effective immune surveillance while reducing systemic immunopathology.


Journal of Immunology | 2000

NK Markers Are Expressed on a High Percentage of Virus-Specific CD8+ and CD4+ T Cells

Mark K. Slifka; Robb R. Pagarigan; J. Lindsay Whitton

NK cells have been phenotypically defined by the expression of specific markers such as NK1.1, DX5, and asialo-GM1 (ASGM1). In addition to NK cells, a small population of CD3+ T cells has been shown to express these markers, and a unique subpopulation of NK1.1+CD3+ T cells that expresses an invariant TCR has been named “NKT cells.” Here, we describe NK marker expression on a broad spectrum of MHC class I- and MHC class II-restricted T cells that are induced after acute viral infection. From 5 to >500 days post lymphocytic choriomeningitis virus (LCMV) infection, more than 90% of virus-specific CD8+ and CD4+ T cells coexpress one or more of these three prototypical NK markers. Furthermore, in vivo depletion of NK cells with anti-ASGM1 Ab resulted in the removal of 90% of virus-specific CD8+ T cells and 50–80% of virus-specific CD4+ T cells. This indicates that studies using in vivo depletion to determine the role of NK cells in immune defense could potentially be misinterpreted because of the unintended depletion of Ag-specific T cells. These results demonstrate that NK Ags are widely expressed on the majority of virus-specific T cells and indicate that the NK and T cell lineages may not be as distinct as previously believed. Moreover, the current nomenclature defining NKT cells will require comprehensive modification to include Ag-specific CD8+ and CD4+ T cells that express prototypical NK Ags.


Journal of Experimental Medicine | 2005

Interferon-γ acts directly on CD8+ T cells to increase their abundance during virus infection

Jason K. Whitmire; Joyce T. Tan; J. Lindsay Whitton

Interferon-γ (IFNγ) is important in regulating the adaptive immune response, and most current evidence suggests that it exerts a negative (proapoptotic) effect on CD8+ T cell responses. We have developed a novel technique of dual adoptive transfer, which allowed us to precisely compare, in normal mice, the in vivo antiviral responses of two T cell populations that differ only in their expression of the IFNγ receptor. We use this technique to show that, contrary to expectations, IFNγ strongly stimulates the development of CD8+ T cell responses during an acute viral infection. The stimulatory effect is abrogated in T cells lacking the IFNγ receptor, indicating that the cytokine acts directly upon CD8+ T cells to increase their abundance during acute viral infection.


Nature Reviews Microbiology | 2005

Host and virus determinants of picornavirus pathogenesis and tropism

J. Lindsay Whitton; Christopher T. Cornell; Ralph Feuer

The family Picornaviridae contains some notable members, including rhinovirus, which infects humans more frequently than any other virus; poliovirus, which has paralysed or killed millions over the years; and foot-and-mouth-disease virus, which led to the creation of dedicated institutes throughout the world. Despite their profound impact on human and animal health, the factors that regulate pathogenesis and tissue tropism are poorly understood. In this article, we review the clinical and economic challenges that these agents pose, summarize current knowledge of host–pathogen interactions and highlight a few of the many outstanding questions that remain to be answered.


Journal of Virology | 2002

Recombinant Vaccinia Virus-Induced T-Cell Immunity: Quantitation of the Response to the Virus Vector and the Foreign Epitope

Laurie E. Harrington; Robbert G. van der Most; J. Lindsay Whitton; Rafi Ahmed

ABSTRACT Recombinant vaccinia viruses (rVV) have been extensively used as vaccines, but there is little information about the total magnitude of the VV-specific T-cell response and how this compares to the immune response to the foreign gene(s) expressed by the rVV. To address this issue, we quantitated the T-cell responses to both the viral vector and the insert following the infection of mice with VV expressing a cytotoxic T lymphocyte (CTL) epitope (NP118-126) from lymphocytic choriomeningitis virus (LCMV). The LCMV epitope-specific response was quantitated by intracellular cytokine staining after stimulation with the specific peptide. To analyze the total VV-specific response, we developed a simple intracellular cytokine staining assay using VV-infected major histocompatibility complex class I and II matched cells as stimulators. Using this approach, we made the following determinations. (i) VV-NP118 induced potent and long-lasting CD8 and CD4 T-cell responses to the vector; at the peak of the response (∼1 week), there were ∼107 VV-specific CD8 T cells (25% of the CD8 T cells) and ∼106 VV-specific CD4 T cells (∼5% of the CD4 T cells) in the spleen. These numbers decreased to ∼5 × 105 CD8 T cells (∼5% frequency) and ∼105 CD4 T cells (∼0.5% frequency), respectively, by day 30 and were then stably maintained at these levels for >300 days. The size of this VV-specific T-cell response was comparable to that of the T-cell response induced following an acute LCMV infection. (ii) VV-specific CD8 and CD4 T cells were capable of producing gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-2; all cells were able to make IFN-γ, a subset produced both IFN-γ and TNF-α, and another subset produced all three cytokines. (iii) The CD8 T-cell response to the foreign gene (LCMV NP118-126 epitope) was coordinately regulated with the response to the vector during all three phases (expansion, contraction, and memory) of the T-cell response. The total number of CD8 T cells responding to NP118-126 were ∼20- to 30-fold lower than the number responding to the VV vector (∼1% at the peak and 0.2% in memory). This study provides a better understanding of T-cell immunity induced by VV-based vaccines, and in addition, the technique described in the study can be readily extended to other viral vectors to determine the ratio of the T-cell response to the insert versus the vector. This information will be useful in optimizing prime-boost regimens for vaccination.


Journal of Immunology | 2000

Activated and Memory CD8+ T Cells Can Be Distinguished by Their Cytokine Profiles and Phenotypic Markers

Mark K. Slifka; J. Lindsay Whitton

Dissecting the mechanisms of T cell-mediated immunity requires the identification of functional characteristics and surface markers that distinguish between activated and memory T lymphocytes. In this study, we compared the rates of cytokine production by virus-specific primary and memory CD8+ T cells directly ex vivo. Ag-specific IFN-γ and TNF-α production by both primary and long-term memory T cells was observed in ≤60 min after peptide stimulation. Although the on-rate kinetics of cytokine production were nearly identical, activated T cells produced more IFN-γ, but less TNF-α, than memory T cells. Ag-specific cytokine synthesis was not a constitutive process and terminated immediately following disruption of contact with peptide-coated cells, demonstrating that continuous antigenic stimulation was required by both T cell populations to maintain steady-state cytokine production. Upon re-exposure to Ag, activated T cells resumed cytokine production whereas only a subpopulation of memory T cells reinitiated cytokine synthesis. Analysis of cytokine profiles and levels of CD8, LFA-1, and CTLA-4 together revealed a pattern of expression that clearly distinguished in vivo-activated T cells from memory T cells. Surprisingly, CTLA-4 expression was highest at the early stages of the immune response but fell to background levels soon after viral clearance. This study is the first to show that memory T cells have the same Ag-specific on/off regulation of cytokine production as activated T cells and demonstrates that memory T cells can be clearly discriminated from activated T cells directly ex vivo by their cytokine profiles and the differential expression of three well-characterized T cell markers.


American Journal of Pathology | 1998

Coxsackievirus B3-Induced Myocarditis : Perforin Exacerbates Disease, But Plays No Detectable Role in Virus Clearance

John R. Gebhard; Christopher M. Perry; Stephanie Harkins; Thomas E. Lane; Ignacio Mena; Valérie C. Asensio; Iain L. Campbell; J. Lindsay Whitton

Viral myocarditis is remarkably common, being detected in approximately 1% of unselected asymptomatic individuals. Many cases are attributable to enteroviral infection, and in particular to coxsackievirus B3. The underlying pathogenesis is controversial, but most studies admit the important immunopathological role of infiltrating CD8+ (cytotoxic) T lymphocytes (CTLs). We have previously shown that CTLs play conflicting roles in coxsackievirus B (CVB) myocarditis; they assist in controlling virus replication, but also are instrumental in causing the extensive inflammatory disease, which often results in severe myocardial scarring. A role for perforin, the major CTL cytolytic protein, in CVB myocarditis has been suggested, but never proven. In the present study we use perforin knockout (PKO) mice to show that perforin plays a major role in CVB infection; in broad terms, perforin is important in immunopathology, but not in CVB clearance. For example, PKO mice are better able to withstand a normally lethal dose of CVB (100% survival of PKO mice compared with 90% death in +/+ littermates). In addition, PKO mice given a nonlethal dose of CVB develop only a mild myocarditis, whereas their perforin+ littermates have extensive myocardial lesions. The myocarditis in PKO mice resolves more quickly, and these mice show minimal histological sequelae; in contrast, late in disease the perforin+ mice develop severe myocardial fibrosis. PKO mice, despite lacking this major CTL effector function, can control the infection and eradicate the virus; growth kinetics and peak CVB titers are indistinguishable in PKO and perforin+ mice. Therefore, the immunopathological and antiviral effects of CTLs can be uncoupled by ablation of perforin; this offers a promising target for therapy of myocarditis. Furthermore, we evaluate the possible roles of apoptosis, and of chemokine expression, in CVB infection. In perforin+ mice, apoptotic cells are detected within the inflammatory infiltrate, whereas in their PKO counterparts, apoptotic myocyte nuclei are seen. Chemokine expression in both PKO and perforin+ mice precedes and parallels the course of myocarditis. Several chemokines are detectable earlier in PKO mice than in perforin+ mice, but PKO mice show reduced peak levels, and chemokine expression decays sooner. In particular, MIP-1alpha expression is barely detectable at any time point in PKO mice, but it is readily identified in perforin+ animals, peaking just before the time of maximal myocarditis; this is particularly interesting, given that MIP-1alpha knockout mice are resistant to CVB myocarditis, but remain able to control viral infection. Thus, the chemokine pathway offers a second route of intervention to diminish myocarditis and its sequelae, while permitting the host to eradicate the virus.


Journal of Virology | 2002

Cell Cycle Status Affects Coxsackievirus Replication, Persistence, and Reactivation In Vitro

Ralph Feuer; Ignacio Mena; Robb R. Pagarigan; Mark K. Slifka; J. Lindsay Whitton

ABSTRACT Enteroviral persistence has been implicated in the pathogenesis of several chronic human diseases, including dilated cardiomyopathy, insulin-dependent diabetes mellitus, and chronic inflammatory myopathy. However, these viruses are considered highly cytolytic, and it is unclear what mechanisms might permit their long-term survival. Here, we describe the generation of a recombinant coxsackievirus B3 (CVB3) expressing the enhanced green fluorescent protein (eGFP), which we used to mark and track infected cells in vitro. Following exposure of quiescent tissue culture cells to either wild-type CVB3 or eGFP-CVB3, virus production was very limited but increased dramatically after cells were permitted to divide. Studies with cell cycle inhibitors revealed that cells arrested at the G1 or G1/S phase could express high levels of viral polyprotein and produced abundant infectious virus. In contrast, both protein expression and virus yield were markedly reduced in quiescent cells (i.e., cells in G0) and in cells blocked at the G2/M phase. Following infection with eGFP-CVB3, quiescent cells retained viral RNA for several days in the absence of infectious virus production. Furthermore, RNA extracted from nonproductive quiescent cells was infectious when transfected into dividing cells, indicating that CVB3 appears to be capable of establishing a latent infection in G0 cells, at least in tissue culture. Finally, wounding of infected quiescent cells resulted in viral protein expression limited to cells in and adjacent to the lesion. We suggest that (i) cell cycle status determines the distribution of CVB3 during acute infection and (ii) the persistence of CVB3 in vivo may rely on infection of quiescent (G0) cells incapable of supporting viral replication; a subsequent change in the cell cycle status may lead to virus reactivation, triggering chronic viral and/or immune-mediated pathology in the host.

Collaboration


Dive into the J. Lindsay Whitton's collaboration.

Top Co-Authors

Avatar

Stephanie Harkins

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jason K. Whitmire

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Ralph Feuer

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Claudia T. Flynn

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Mark K. Slifka

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Fernando Rodriguez

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Mehrdad Alirezaei

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge