J. Liyana
Universiti Malaysia Perlis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Liyana.
Advanced Materials Research | 2013
A.M. Mustafa Al Bakri; J. Liyana; Mohamed Noor Norazian; H. Kamarudin; C.M. Ruzaidi
Natural fibers reinforced polymer composites have gained more interest because of their biodegradable, light weight, less expensive sources, easy processing, high specific modulus and also environmentally friendly appeal. This paper presents an overview of a study aimed at showing on how the bio-composites which is bagasse fibers combined with resins as an alternative of bagasse-fiber-based composites panel. Transforming bagasse fibers into panel products provides a prospective solution. Bagasse-fiber-based composites offer potential as the core material replacing high density and expensive wood-based fiberboard. Biodegradable composites reinforced with bagasse fibres after being modified or treated by alkali treatment were prepared and also the mechanical properties were investigated. The bio-composites panel samples were processed by hot press machine. All panels were made with aspect ratios between bagasse fibers and polystyrene thermoplastics resins and also the sieve size of bagasse fibers which has short fibers and combination of short fiber and granules fibers. The polystyrene was added as a modified from natural fibers to determine the effect it had on physical and mechanical properties of the panel. Resin content level and panel density were very important in controlling the strength properties of the panels. Surface hardness value, compressive strength, bending strength and bending modulus values all increases in resin content level and panel density. Bagasse-based-panel products can be commercialize successfully if have good development of a cost manufacturing process on an establishment of a market base for the products.
Advanced Materials Research | 2012
Mohd Mustafa Al Bakri Abdullah; Ahmad Mohd Izzat; M.T. Muhammad Faheem; H. Kamarudin; I. Khairul Nizar; M. Bnhussain; A.R. Rafiza; Y. Zarina; J. Liyana
Wood fibres have long been known as a fibre reinforcement for concrete. Due to its availability and low production cost, this natural fibre has been used in less developed country where conventional construction materials were very expensive. In Japan, the production of these types of composites such as high performance fibre-reinforced cement-based composite (HPFRCB), ultra high performance (UHPFRCB) and strain-hardening (SHCC) fibre-reinforced cement-based composite has been developed rapidly in last decades. Geopolymer, future composite and cement produced by the alkali-activation reaction is well known as a potential replacement to Ordinary Portland Cement. This study aims at studying the possibility to produce wood fibre-reinforced geopolymer composite (WFRGC). The various percentage of fibre have been made from 10% to 50% and cured at 60C, tested for compressive strength for 7th and 14th day and the microstructure examined using SEM. The density and water absorption test have been performed. The results showed are encouraging and indicate the feasibility of producing a wood fibre-reinforced geopolymer composite (WFRGC).
Applied Mechanics and Materials | 2013
Che Mohd Ruzaidi Ghazali; H. Kamarudin; Shamsul Baharin Jamaludin; A.M. Mustafa Al Bakri; J. Liyana
The development of asbestos free brake pad composites using different fillers was investigated with a intention to substitute asbestos which is known hazardous and carcinogenic. Mechanical and morphology studies were made to clarify the mechanism for compressive strength, hardness and wear rate behavior of different filler of brake pad which were prepared by compression molding of mixture of filler (palm slag, calcium carbonate and dolomite) with phenolic as binder, metal fiber as reinforcement, graphite as lubricant and alumina as abrasive. The result showed that palm slag has significant potential to use as filler material in brake pad composite. The wear rate of palm slag composite was comparable with the conventional asbestos based brake pad. The result also supported by SEM micrograph.
Key Engineering Materials | 2013
Selimin Mohammad Tamizi; Abdullah Mohd Mustafa Al Bakri; H. Kamarudin; C.M. Ruzaidi; J. Liyana; A.K. Aeslina
Geopolymer is an inorganic polymer performed in synthesis process of an aluminosilicate material which activated by alkaline activator solution. Marine clay, considered to be a waste substance which have an important aluminosilicate sources in developing geopolymer synthesis since it contains sufficient amounts of alumina and silica. In this experimental study, local marine clay composition was been identified to determine the amount of alumina and silica. The raw sample compositions were identified by using X-ray fluorescence (XRF). Incorporated with it composition, compressive strength of brick were been tested in aged of 1, 2 and 3 day and compared with local production of cement brick (CB). This research is aimed at determining the properties of Kuala Perlis marine clay in order to verify its suitability as a pozzolana materials as well as the sufficient amount of Al and Si to enhance the properties of geopolymer brick.
Applied Mechanics and Materials | 2013
A.M. Mustafa Al Bakri; H. Kamarudin; M. Bnhussain; J. Liyana; Che Mohd Ruzaidi Ghazali
This paper presents the development of a nano geopolymer for sustainable concrete using fly ash synthesized by high-energy ball milling. In this paper, we report on our investigation of the effects of grinding on the binder properties and the optimization of the mix design for nano geopolymer paste. The research methodology consisted of synthesizing fly ash by using a high-energy ball mill to create nanosized particles and determining the formulation and mix proportions required to produce a nano geopolymer paste with the addition of an alkaline activator. The ratio of fly ash to alkaline activator and sodium silicate to sodium hydroxide were constant for the entire experiment which is 2.5. Ball milling was conducted for the total duration of six hours, during which particle size was reduced from 10 μm to 60 nm. The nano geopolymer were cured at temperature 70°C and then tested on 1st day and 7th day for compressive strength. Scanning electron microscopy (SEM) was used to characterize the shape, texture, and size of the milled fly ash.
Key Engineering Materials | 2013
J. Liyana; Abdullah Mohd Mustafa Al Bakri; Kamarudin Hussin; C.M. Ruzaidi; A. Rashid Azura
Fly ash geopolymer coating material potential used to protect surface used in exposure conditions. Ratio of fly ash/alkaline activator and Na2SiO3/NaOH play important parameter on determining the best flexural strength of geopolymer coating material. Fly ash and alkali activator (Al2O3/Na2SiO3) were mixed with the solids-to-liquid ratios in range of 1.0-3.0 and different ratios of Na2SiO3/NaOH (1.0-3.0) to prepare geopolymer coating material at constant NaOH concentration of 10 M. Effect of fly ash/alkaline activator ratio and Na2SiO3/NaOH on geopolymer coating was determined with respect to the highest flexural strength of the 1200oC sintering temperature of geopolymer coating substrates. The results concluded that the highest strength for fly ash geopolymer coating material is achieved 42 MPa when the solid/liquid ratio is 2.0 and the Na2SiO3/NaOH ratio is 2.5.
Applied Mechanics and Materials | 2013
Abdullah Mohd Mustafa Al Bakri; Mohamed Noor Norazian; Mazlan Mohamed; H. Kamarudin; C.M. Ruzaidi; J. Liyana
This research focuses on a study of the strength of concrete with ceramic waste as coarse aggregate and quarry dust as fine aggregate. The sources of ceramic waste and quarry dust are obtained from the industrial in Malaysia. Presently, in ceramics industries the production goes as waste, which is not under going the recycle process yet. In this study an attempt has been made to find the suitability of the ceramic industrial wastes and quarry dust as a possible replacement for conventional crushed stone coarse and fine aggregate. Experiment were carried out to determine the strength of concrete with ceramic waste coarse aggregate and quarry dust fine aggregate to compare them with the conventional concrete made (with crushed stone coarse aggregate). From the results show that compressive strength of concrete with quarry dust as aggregates is the highest with 30.82 MPa with density 2251.85 kg/m3. This show, ceramic waste and quarry dust can be alternative aggregate for comparable properties.
Key Engineering Materials | 2013
Abdullah Mohd Mustafa Al Bakri; J. Liyana; Tahir Muhammad Faheem; H. Kamarudin; Abdul Rahim Abdul Razak; Zarina Yahya; Abdullah Alida
Geopolymerization is an alternative for ceramic industry by using clay based material such as kaolin or calcined kaolin geopolymer. Geopolymer paste is initially produced by alkaline activation of calcined kaolin with NaOH and Na2SiO3 solution), dried at 80oC for 4 hours, pulverized and sieved to fixed particle size powder. The parameters involved in this processing route (alkali concentration, kaolin or calcined kaolin to activator ratio, alkali activator ratio and heating conditions) are investigated. Geopolymeric powder is added with water to produce slurry to be coated on the surface of clay ceramic. It undergoes heat treatment at high temperature to produce glaze on the surface. Flexural strength and hardness analysis are studied. Result evidences the processing show of incresing strength value between 8-10% after treatment with geopolymer glaze and also the Vickers hardness values of geopolymers improved.
Advanced Materials Research | 2012
S.M. Tamizi; Mohd Mustafa Al Bakri Abdullah; Kamarudin Hussin; Che Mohd Ruzaidi Ghazali; J. Liyana; A.K. Aeslina
In this research, marine clays has been studied its potential as a matrix composite materials that tend to be used as alternative materials to concrete. The study shows that marine clays which mixed with appropriate proportion of alkaline activator could have strength requirements for masonry cement. The alkaline activator that been used for the geopolymerisation reaction is sodium silicate and sodium hydroxide. Its compressive strength in early time reached 9-15 MPa.
Advanced Science Letters | 2013
A.M. Mustafa Al Bakri; J. Liyana; H. Kamarudin; M. Bnhussain; C.M. Ruzaidi; A.R. Rafiza; Ahmad Muhd Izzat