Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J.M. Delgado-García is active.

Publication


Featured researches published by J.M. Delgado-García.


The Journal of Physiology | 1992

A physiological study of vestibular and prepositus hypoglossi neurones projecting to the abducens nucleus in the alert cat.

Miguel Escudero; R. R. de la Cruz; J.M. Delgado-García

1. Vestibular and prepositus hypoglossi (PH) neurones projecting to the abducens (ABD) nucleus were recorded in the alert cat. Their discharge characteristics were analysed to ascertain the origin of the horizontal eye position signal present in ABD neurones. 2. Neurones were classified according to: their location with respect to the ABD nucleus; their antidromic activation from the ABD nucleus; the synaptic field potential they induced in the ABD nucleus with the spike‐triggered averaging technique; and their activity during spontaneous and vestibularly induced eye movements. 3. Vestibular neurones projecting to the ABD nucleus were located in the rostral medial vestibular nucleus. They were excitatory on the contralateral and inhibitory on the ipsilateral ABD neurones. Both types of premotor vestibular neurone showed a firing rate weakly related to eye position, increasing for eye fixations in the contralateral on‐direction, and decreasing with ipsilateral fixation. Position sensitivity during eye fixations was (means +/‐ S.D.) 1.8 +/‐ 0.9 spikes s‐1 deg‐1 for excitatory neurones and 2.2 +/‐ 1.3 spikes s‐1 deg‐1 for inhibitory neurones. Firing rate exhibited a high variability during eye fixations. Their responses during saccades in the off‐direction were characterized by a pause that, although less defined, was occasionally present during saccades in the on‐direction. Eye velocity sensitivity during spontaneous saccades in the on‐direction was 0.17 +/‐ 0.15 spikes s‐1 deg‐1 s‐1 for excitatory neurones and 0.15 +/‐ 0.07 spikes s‐1 deg‐1 s‐1 for inhibitory vestibular neurones. During sinusoidal head stimulation at 0.2 Hz, vestibular neurones showed a type I discharge rate with a phase lead over eye position of 86.0 +/‐ 14.1 deg for excitatory and 80.2 +/‐ 12.5 deg for inhibitory neurones. Position sensitivity during vestibular stimulation did not differ significantly from values obtained for spontaneous eye movements. However, the velocity sensitivity of premotor vestibular neurones during head rotation was significantly higher (1.6 +/‐ 0.2 spikes s‐1 deg‐1 s‐1 for excitatory and 1.5 +/‐ 0.3 spikes s‐1 deg‐1 s‐1 for inhibitory neurones) than during spontaneous eye movements. 4. PH neurones projecting to the ABD nucleus were located in the rostral one‐third of the nucleus. These neurones were excitatory on the ipsilateral and inhibitory on the contralateral ABD nucleus. Their firing rates were correlated mainly with eye position, increasing for abducting eye positions of the ipsilateral eye and decreasing with adduction movements.(ABSTRACT TRUNCATED AT 400 WORDS)


Neuroscience | 1988

Behavior of neurons in the abducens nucleus of the alert cat—III. Axotomized motoneurons

J.M. Delgado-García; F. Del Pozo; R.F. Spencer; R. Baker

The effects of peripheral and central VIth nerve axotomy on abducens nucleus synaptic potentials of vestibular origin and the ultrastructure of intracellularly labeled abducens motoneurons were examined in the anesthetized cat. Subsequent experiments explored the activity of identified abducens motoneurons during spontaneous and vestibular induced eye movements in alert cats prepared for chronic recordings of eye movements, single units and field potentials. Following axotomy the typical disynaptic inhibition of abducens motoneurons induced by electrical stimulation of the ipsilateral vestibular nerve either disappeared or was reduced for 5-30 days. Disynaptic activation produced by contralateral VIIIth nerve stimulation was apparently not affected. These changes were accompanied at the ultrastructural level by a decrease of axosomatic pleiomorphic synaptic endings. No changes were observed in either the number or distribution of synaptic endings on proximal and distal dendrites. Although not expected by results obtained in acute experiments, axotomized motoneurons showed a decreased excitability in the behavioral paradigm. Amplitude of the abducens antidromic field potential was significantly reduced 4-6 days following axotomy and frequent failures were observed in the antidromic somadendritic invasion of single motoneurons. Somatic invasion was obtained by the simultaneous presentation of appropriate visual and/or vestibular synaptic activity. Chronic recordings of field potentials showed their amplitude to recover in 30-40 days. The spontaneous and vestibular induced activity of identified axotomized motoneurons during this period of time differed in several aspects from controls. Motoneurons could not maintain tonic activity during eye fixations and they showed short, low frequency, bursts of activity that followed, rather than preceded, on-directed saccades. In some cases axotomized motoneurons fired during horizontal off-directed and vertical saccades. Position and velocity gains of axotomized motoneurons were lower than control values. The effects of central axotomy were always larger and of longer duration than those following peripheral axotomy. Structural and functional properties influenced by axotomy seemed to recover in 2-3 months, but with independent time courses. The present results differ in many aspects from those described after axotomy in spinal and hypoglossal motoneurons. In addition, they point out that behavior or axotomized neurons in chronic preparations are not predictable on the basis of those described in acute experiments.


Experimental Brain Research | 1988

Behavior of reticular, vestibular and prepositus neurons terminating in the abducens nucleus of the alert cat.

Miguel Escudero; J.M. Delgado-García

SummaryThe activity of pontomedullary reticular, vestibular, and prepositus neurons has been recorded in the alert cat during spontaneous and vestibular-induced eye movements. Neurons were identified by their antidromic activation from the abducens nucleus. Spikes of these neurons were used to trigger the recording of field potentials in the abducens nucleus. The analysis by post-spike averaging of the field potentials showed the presence of a trifold system of reciprocal (excitatory and inhibitory) direct projections that originated in the above nuclei and terminated in the abducens nucleus with a distinctly graded effectiveness. This trifold afferent system is involved in the generation of fast eye movements, slow compensatory movements of vestibular origin, and eye fixation, respectively.


Neuroscience | 1997

Effects of botulinum neurotoxin type A on abducens motoneurons in the cat: ultrastructural and synaptic alterations

Angel M. Pastor; B. Moreno-Lopez; R. R. de la Cruz; J.M. Delgado-García

The synaptic alterations induced in abducens motoneurons by the injection of 3 ng/kg of botulinum neurotoxin type A into the lateral rectus muscle were studied using ultrastructural and electrophysiological techniques. Motoneurons identified by the retrograde transport of horseradish peroxidase showed a progressive synaptic stripping already noticeable by four days post-injection which increased over the study period. By 35 days post-injection, the normal coverage of motoneurons by synaptic boutons (66.4 +/- 4.0%) significantly decreased to 27.2 +/- 4.0%. Synaptic boutons detached by a widening of the subsynaptic space but remained apposed by synaptic contacts and desmosomes to the motoneuron. Detachment did not affect equally flat and round vesicle-containing boutons. The control motoneuron had almost equal numbers of both types of boutons, but after 35 days post-injection the ratio of round to flat vesicle-containing boutons was 1.20 +/- 0.01. Synaptic boutons impinging on motoneurons showed signs of alterations in membrane turnover, as indicated by an increase in the number of synaptic vesicles and a decrease in the number of coated vesicles and synaptic vesicles near the active zone. Abducens motoneurons had a transient increase in soma size by 15 days that returned to normal at 35 days, but no signs of chromatolysis or organelle degeneration were seen. Accompanying the swelling of motoneurons, a 15-fold increase in the number of spines, very infrequent in controls, was observed. Spines located in the soma and proximal dendritic trunk received synaptic contacts from both flat and round vesicle-containing boutons that could be either partly detached or completely attached to the motoneuron. An increased turnover of the plasmatic membrane of the motoneuron was observed, as indicated by a four-fold increase in the number of somatic coated vesicles. Animals were implanted with bipolar electrodes in the ampulla of both horizontal semicircular canals for evoking contralateral excitatory and ipsilateral inhibitory postsynaptic potentials. Motoneurons were antidromically identified from the lateral rectus muscle. Synaptic potentials of vestibular origin were recorded in abducens motoneurons. In the period between two and six days post-injection, a complete abolition of inhibitory synaptic potentials was observed. By contrast, excitatory synaptic potentials remained, but were reduced by 82%. The imbalance between excitatory and inhibitory inputs to motoneurons induced a progressive increase of firing frequency within a few stimuli applied to the contralateral canal. Between 7 and 15 days post-injection, both excitatory and inhibitory postsynaptic potentials were virtually abolished and remained so up to the longest time checked (105 days). Some motoneurons recorded beyond 60 days post-injection showed signs of recovery of excitatory postsynaptic potentials. During the whole time-span studied, presynaptic wavelets were present, indicating no affecting of the conduction of afferent volleys to the abducens nucleus. Taken together, these data indicate that botulinum neurotoxin at high doses causes profound synaptic alterations in motoneurons responsible for the effects seen in the behavior of motoneurons recorded in alert animals.


Neuroscience Letters | 1981

A morphological study of ambiguus nucleus motoneurons innervating the laryngeal muscles in the rat and cat

B. Lobera; Rosario Pasaro; S. González-Barón; J.M. Delgado-García

The location and axonal projections of laryngeal motoneurons (LMn) have been studied in rats and cats using horseradish peroxidase as a retrograde tracer. LMn are located in the caudal part of the ambiguus nucleus in both species. In the cat, LMn are organized in two groups with a specific orientation of their dendritic trees. LMn axonal projections are ipsilateral in cats and bilateral in rats.


Neuron | 1996

Nitric Oxide Production by Brain Stem Neurons Is Required for Normal Performance of Eye Movements in Alert Animals

B. Moreno-López; Miguel Escudero; J.M. Delgado-García; C. Estrada

Although nitric oxide (NO) is produced by discrete groups of neurons in the brain, participation of NO in premotor structures directly involved in reflexively evoked, sensory-motor functions has not been demonstrated so far. We now show that NO is a physiological mediator in the generation of a specific motor response in alert behaving animals. In the oculomotor system, numerous neurons expressing nitric oxide synthase (NOS) are located in the prepositus hypoglossi, a nucleus involved in the control of horizontal eye movements. Unilateral inhibition of NOS within this nucleus results in severe ocular nystagmus with slow phases directed to the contralateral side. Accordingly, local increases of NO or cyclic GMP produced a nystagmus in the opposite direction. It is concluded that a balanced production of NO by prepositus hypoglossi neurons is a necessary condition for the normal performance of eye movements in alert animals.


Neuroreport | 2000

Limits to the capacity of transplants of olfactory glia to promote axonal regrowth in the CNS.

Gudiño-Cabrera G; Angel M. Pastor; de la Cruz Rr; J.M. Delgado-García; Nieto-Sampedro M

Olfactory bulb ensheathing cell (OBEC) transplants promoted axonal regeneration in the spinal cord dorsal root entry zone and in the corticospinal tract. However, OBECs failed to promote abducens internuclear neuron axon regeneration when transplanted at the site of nerve fibre transection. In experiments performed in both cats and rats, OBECs survived for up to 2 months, lining themselves up along the portion of the regrowing axons proximal to the interneuron cell body. However, OBECs migrated preferentially towards abducens somata, in the direction opposite to the oculomotor nucleus target. OBECs seem to promote nerve fibre regeneration only where preferred direction of glial migration coincides with the direction of axonal growth towards its target.


Neurology | 1997

Dose-dependent, central effects of botulinum neurotoxin type A A pilot study in the alert behaving cat

B. Moreno-Lopez; Angel M. Pastor; R. R. de la Cruz; J.M. Delgado-García

Article abstract-We investigated, in alert behaving cats, the long-term effects of botulinum neurotoxin (BoNT) type A injected into the lateral rectus muscle of the eye. We studied orthodromic field potentials recorded in the injected muscle, eye movements, and the discharge characteristics of the innervating abducens motoneurons. Single BoNT injections at doses from 0.01 to 0.3 ng/kg reduced, or even completely eliminated, eye movements in the abducting direction for up to 2 months without affecting the motoneuron discharge profile that remained related to actual eye movements of the contralateral unparalyzed eye. This result indicates that abducens motoneurons were still under the influence of the ocular motor central control system regardless of their ineffective action on lateral rectus muscle fibers. We also conclude that paralysis per se is not enough to initiate axotomy-like neural responses in ocular motoneurons. The injection of BoNT at a dose of 3 ng/kg produced significant changes in the discharge pattern of abducens motoneurons lasting up to 3 months-the maximum time checked. This finding was probably due to retrograde and, perhaps, transneuronal effects of BoNT when injected in a high dose. The results give some indications of the maximum allowable dose that can be used without the induction of unwanted side effects in the motoneuronal pool innervating the injected muscle. NEUROLOGY 1997;48: 456-464


Neuroscience | 1999

Different discharge properties of rat facial nucleus motoneurons

C Magariños-Ascone; Angel Nuñez; J.M. Delgado-García

In this paper, we describe two types of putative facial motoneuron based on their electrophysiological properties and on their firing frequency adaptation as recorded in rat brainstem slices. Type I motoneurons (n = 33, 61%) were characterized by a sustained spike firing during depolarizing current injections and a marked depolarizing sag (inward rectification) during hyperpolarizing pulses. The time-course and voltage-dependence of the inward rectification together with the finding that it was blocked by Cs+ are consistent with the involvement of a Na+ -and K+ -mediated Q current. Type II motoneurons (n = 21, 39%) were identified by a fast spike firing adaptation. Type II cells showed a less pronounced inward rectification with hyperpolarizing current pulses and a higher discharge rate than type I cells during depolarizing current pulses. These distinct discharge properties imply the activation of a Ca2+ -dependent K+ current, because when carbachol was added to the bath, or the slice was exposed to a Ca2+ -free solution, a decrease was noticed in the firing frequency adaptation. The two types of motoneuron were further differentiated by the initial delay of the first spike, observed only in type I cells, which was blocked by bath application of 4-aminopyridine, indicating the presence of a K+ -mediated A current. The addition of 4-aminopyridine to the bath also increased the firing rate due to a decrease of the post-spike afterhyperpolarization. However, the two types of motoneuron were not morphologically differentiated. Facial motoneurons exhibited rhythmic membrane potential oscillations (8-20 Hz) at depolarized membrane potentials or during the silence following spike frequency adaptation. It is suggested that the intrinsic properties of these two types of facial motoneuron may be relevant in the government of distinct facial muscle activities. The fact that their discharge rate and the level of spike frequency adaptation were modified by altering some K+ currents suggests a potential plasticity in the modulation of motoneuron firing activities depending upon functional motor needs.


Neuroscience | 1992

Role of GABA in the extraocular motor nuclei of the cat : a postembedding immunocytochemical study

R. R. de la Cruz; Angel M. Pastor; F.J. Martínez-Guijarro; C. López-García; J.M. Delgado-García

The GABAergic innervation of the extraocular motor nuclei in the cat was evaluated using postembedding immunocytochemical techniques. The characterization of GABA-immunoreactive terminals in the oculomotor nucleus was carried out at the light and electron microscopic levels. GABA-immunopositive puncta suggestive of boutons were abundant in semithin sections throughout the oculomotor nucleus, and were found in close apposition to somata and dendrites. Ultrathin sections revealed an extensive and dense distribution of GABA-immunoreactive synaptic endings that established contacts with the perikarya and proximal dendrites of motoneurons and were also abundant in the surrounding neuropil. GABAergic boutons were characterized by the presence of numerous mitochondria, pleiomorphic vesicles and multiple small symmetrical synaptic contacts. The trochlear nucleus exhibited the highest density of GABAergic terminations. In contrast, scarce GABA immunostaining was associated with the motoneurons and internuclear neurons of the abducens nucleus. In order to further elucidate the role of this neurotransmitter in the oculomotor system, retrograde tracing of horseradish peroxidase was used in combination with the GABA immunostaining. First, medial rectus motoneurons were identified following horseradish peroxidase injection into the corresponding muscle. This was carried out because of the peculiar afferent organization of medial rectus motoneurons that contrasts with the remaining extraocular motoneurons, especially their lack of direct vestibular inhibition. Semithin sections of the oculomotor nucleus containing retrogradely labeled medial rectus motoneurons and immunostained for GABA revealed numerous immunoreactive puncta in close apposition to horseradish peroxidase-labeled somata and in the surrounding neuropil. At the ultrastructural level, GABAergic terminals established synaptic contacts with the somata and proximal dendrites of medial rectus motoneurons. Their features and density were similar to those found in the remaining motoneuronal subgroups of the oculomotor nucleus. Second, oculomotor internuclear neurons were identified following the injection of horseradish peroxidase into the abducens nucleus to determine whether they could give rise to GABAergic terminations in the abducens nucleus. About 20% of the oculomotor internuclear neurons were doubly labeled by retrograde horseradish peroxidase and GABA immunostaining. A high percentage (80%) of the oculomotor internuclear neurons projecting to the abducens nucleus showed immunonegative perikarya. It was concluded that the oculomotor internuclear pathway to the abducens nucleus comprises both GABAergic and non-GABAergic neurons and, at least in part, the GABA input to the abducens nucleus originates from this source. It is suggested that this pathway might carry excitatory and inhibitory influences on abducens neurons arising bilaterally.

Collaboration


Dive into the J.M. Delgado-García's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agnès Gruart

Pablo de Olavide University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José López-Barneo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge