Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. M. Grondona is active.

Publication


Featured researches published by J. M. Grondona.


European Journal of Neuroscience | 2010

IGF‐I stimulates neurogenesis in the hypothalamus of adult rats

Margarita Pérez-Martín; Manuel Cifuentes; J. M. Grondona; M.D. López-Avalos; U. Gómez-Pinedo; Jose Manuel Garcia-Verdugo; P. Fernández-Llebrez

In the brain of adult rats neurogenesis persists in the subventricular zone of the lateral ventricles and in the dentate gyrus of the hippocampus. By contrast, low proliferative activity was observed in the hypothalamus. We report here that, after intracerebroventricular treatment with insulin‐like growth factor I (IGF‐I), cell proliferation significantly increased in both the periventricular and the parenchymal zones of the whole hypothalamus. Neurons, astrocytes, tanycytes, microglia and endothelial cells of the local vessels were stained with the proliferative marker 5‐bromo‐2′‐deoxyuridine (BrdU) in response to IGF‐I. Conversely, we never observed BrdU‐positive ciliated cubic ependymal cells. Proliferation was intense in the subventricular area of a distinct zone of the mid third ventricle wall limited dorsally by ciliated cubic ependyma and ventrally by tanycytic ependyma. In this area, we saw a characteristic cluster of proliferating cells. This zone of the ventricular wall displayed three cell layers: ciliated ependyma, subependyma and underlying tanycytes. After IGF‐I treatment, proliferating cells were seen in the subependyma and in the layer of tanycytes. In the subependyma, proliferating glial fibrillary acidic protein‐positive astrocytes contacted the ventricle by an apical process bearing a single cilium and there were many labyrinthine extensions of the periventricular basement membranes. Both features are typical of neurogenic niches in other brain zones, suggesting that the central overlapping zone of the rat hypothalamic wall could be considered a neurogenic niche in response to IGF‐I.


Journal of Neuropathology and Experimental Neurology | 1996

Ependymal Denudation, Aqueductal Obliteration and Hydrocephalus after a Single Injection of Neuraminidase into the Lateral Ventricle of Adult Rats

J. M. Grondona; Margarita Pérez-Martín; Manuel Cifuentes; J. Pérez; Antonio J Jiménez; J. M. Pérez-Fígares; P. Fernández-Llebrez

To investigate the role of sialic acid in the ependyma of the rat brain, we injected neuraminidase from Clostriditum perfingens into the lateral ventricle of 86 adult rats that were sacrificed at various time intervals. After administration of 10 µg neuraminidase, ciliated cuboidal ependymal cells of the lateral ventricles, third ventricle, cerebral aqueduct, and the rostral half of the fourth ventricle died and detached. The ependymal regions sealed by tight juntions such as the choroid plexus and the subcommissural organ were not affected. Debris was removed by infiltrating neutrophils and macrophagic cells. At the same time, after ependymal disappearance, the aqueduct was obliterated. In this region, mitoses were evident and cystic ependymal cells were frequent. Hydrocephalus of the lateral and third ventricles was evident 4 days after neuraminidase injection. Gliosis was restricted to the dorsal telencephalic wall of the injected lateral ventricle. It is thought that cleavage of sialic acid from ependymal surface glycoproteins or glycolipids, likely involved in cell adhesion, led to the detaching and death of the ependymal cells. Thereafter, ependymal loss, together with edema, led to fusion of the lateral walls of the cerebral aqueduct and this in turn provoked hydrocephalus of the third and lateral ventricles. This model of experimental hydrocephalus is compared with other models, in particular those of hydrocephalus after viral invasion of the cerebral ventricles.


Experimental Brain Research | 1994

Decreased cerebrospinal fluid flow through the central canal of the spinal cord of rats immunologically deprived of Reissner's fibre

Manuel Cifuentes; Sara Rodríguez; J. Pérez; J. M. Grondona; Esteban M. Rodríguez; P. Fernández-Llebrez

The subcommissural organ is an ependymal brain gland that secretes glycoproteins to the cerebrospinal fluid (CSF) of the thrid ventricle. They condense to form a fibre, Reissners fibre (RF), that runs along the aqueduct and fourth ventricle and the central canal of the spinal cord. A single injection of an antibody against the secretory glycoproteins of RF into a lateral ventricle of adult rats results in animals permanently deprived of RF in the central canal and bearing a “short” RF extending only along the aqueduct and the fourth ventricle. These animals, together with untreated control animals were used to investigate the probable influence of RF in the circulation of CSF in the central canal of the spinal cord. For this purpose, two tracers (horseradish peroxidase and rabbit immunoglobulin) were injected into the ventricular CSF. The animals were killed 13, 20, 60, 120 and 240 min after the injection, and the amount of the tracers was estimated in tissue sections obtained at proximal, medial and distal levels of the spinal cord. In rats deprived of RF, a significant decrease in the amount of tracers present in the central canal was observed at all experimental intervals, being more evident at 20 min after the injection of the tracers. This suggests that lacking a RF in the central canal decreases the bulk flow of CSF along the central canal. Turbulences of the CSF at the entrance of the central canal of RF-deprived rats might explain the inability of the regenerating RF to progress along the central canal, as well as the reduced flow of CSF in the central canal of these animals.


Cell and Tissue Research | 1988

Immunocytochemical study of the hypothalamic magnocellular neurosecretory nuclei of the snake Natrix maura and the turtle Mauremys caspica

P. Fernández-Llebrez; J. Pérez; Antonio E. Nadales; Manuel Cifuentes; J. M. Grondona; Juan Miguel Mancera; Esteban M. Rodríguez

SummaryAn immunocytochemical study of the magnocellular neurosecretory nuclei was performed in the snake Natrix maura and the turtle Mauremys caspica by use of antisera against: (1) a mixture of both bovine neurophysins, (2) bovine oxytocin-neurophysin, (3) arginine vasotocin, and (4) mesotocin. Arginine vasotocin- and mesotocin-immunoreactivities were localized in individual neurons of the supraoptic and paraventricular nuclei, with a distinct pattern of distribution in both species. The same cells appeared to be stained by the anti-oxytocin-neurophysin and anti-mesotocin sera. The supraoptic nucleus can be subdivided into rostral medial and caudal portions. In N. maura, but not in M. caspica, neurophysin-immunoreactive neurons were found in the retrochiasmatic nucleus. No immunoreactive elements were seen in the suprachiasmatic nucleus of both species after the use of any of the antisera. A dorsolateral aggregation of neurophysin-containing cells, localized over the lateral forebrain bundle, was present in both species. Magnocellular and parvocellular neurophysin-immunoreactive neurons were present in the paraventricular nucleus of both species. In the turtle, the paraventricular neurons were arranged into four distinct layers parallel to the ependyma; these neurons were bipolar with the major axis perpendicular to the ventricle, and many of them projected processes toward the cerebrospinal-fluid compartment. In N. maura a group of large neurons of the paraventricular nucleus was found in a very lateral position. The posterior lobe of the hypophysis and the external zone of the median eminence contained arginine vasotocin- and mesotocin-immunoreactive nerve fibers. The lamina terminalis of both species was supplied with a dense bundle of fibers containing immunoreactive neurophysin. Neurophysin-immunore-active fibers were also present in the septum, some telencephalic regions, including the cortex and the olfactory tubercule, in the paraventricular organ, and the periventricular and periaqueductal gray of the brainstem.


Frontiers in Zoology | 2009

The central nervous system of sea cucumbers (Echinodermata: Holothuroidea) shows positive immunostaining for a chordate glial secretion

Vladimir S. Mashanov; Olga R. Zueva; Thomas Heinzeller; Beate Aschauer; Wilfried Naumann; J. M. Grondona; Manuel Cifuentes; José E. García-Arrarás

BackgroundEchinoderms and chordates belong to the same monophyletic taxon, the Deuterostomia. In spite of significant differences in body plan organization, the two phyla may share more common traits than was thought previously. Of particular interest are the common features in the organization of the central nervous system. The present study employs two polyclonal antisera raised against bovine Reissners substance (RS), a secretory product produced by glial cells of the subcomissural organ, to study RS-like immunoreactivity in the central nervous system of sea cucumbers.ResultsIn the ectoneural division of the nervous system, both antisera recognize the content of secretory vacuoles in the apical cytoplasm of the radial glia-like cells of the neuroepithelium and in the flattened glial cells of the non-neural epineural roof epithelium. The secreted immunopositive material seems to form a thin layer covering the cell apices. There is no accumulation of the immunoreactive material on the apical surface of the hyponeural neuroepithelium or the hyponeural roof epithelium. Besides labelling the supporting cells and flattened glial cells of the epineural roof epithelium, both anti-RS antisera reveal a previously unknown putative glial cell type within the neural parenchyma of the holothurian nervous system.ConclusionOur results show that: a) the glial cells of the holothurian tubular nervous system produce a material similar to Reissners substance known to be synthesized by secretory glial cells in all chordates studied so far; b) the nervous system of sea cucumbers shows a previously unrealized complexity of glial organization. Our findings also provide significant clues for interpretation of the evolution of the nervous system in the Deuterostomia. It is suggested that echinoderms and chordates might have inherited the RS-producing radial glial cell type from the central nervous system of their common ancestor, i.e., the last common ancestor of all the Deuterostomia.


European Journal of Neuroscience | 2003

Neurogenesis in explants from the walls of the lateral ventricle of adult bovine brain: role of endogenous IGF-1 as a survival factor

Margarita Pérez-Martín; Manuel Cifuentes; J. M. Grondona; Francisco Javier Bermúdez-Silva; Pilar M. Arrabal; J. M. Pérez-Fígares; Antonio J Jiménez; Luis Miguel Garcia-Segura; P. Fernández-Llebrez

Previous studies have shown the existence of proliferating cells in explants from bovine (Bos Taurus) lateral ventricle walls that were maintained for several days in vitro in the absence of serum and growth factors. In this study we have characterized the nature of new cells and have assessed whether the insulin‐like growth factor‐1 (IGF‐1) receptor regulates their survival and/or proliferation. The explants were composed of the ependymal layer and attached subependymal cells. Ependymal cells in culture were labelled with glial markers (S‐100, vimentin, GFAP, BLBP, 3A7 and 3CB2) and did not incorporate bromodeoxiuridine when this molecule was added to the culture media. Most subependymal cells were immunoreactive for βIII‐tubulin, a neuronal marker, and did incorporate bromodeoxiuridine. Subependymal neurons displayed immunoreactivity for IGF‐1 and its receptor and expressed IGF‐1 mRNA, indicating that IGF‐1 is produced in the explants and may act on new neurons. Addition to the culture media of an IGF‐1 receptor antagonist, the peptide JB1, did not affect the incorporation of bromodeoxiuridine to proliferating subependymal cells. However, JB1 significantly increased the number of TUNEL positive cells in the subependymal zone, suggesting that IGF‐1 receptor is involved in the survival of subependymal neurons. In conclusion, these findings indicate that neurogenesis is maintained in explants from the lateral cerebral ventricle of adult bovine brains and that IGF‐1 is locally produced in the explants and may regulate the survival of the proliferating neurons.


PLOS ONE | 2013

Pharmacological administration of the isoflavone daidzein enhances cell proliferation and reduces high fat diet-induced apoptosis and gliosis in the rat hippocampus.

Patricia Rivera; Margarita Pérez-Martín; Francisco Javier Pavón; Antonia Serrano; Ana Crespillo; Manuel Cifuentes; M.D. López-Avalos; J. M. Grondona; Margarita Vida; P. Fernández-Llebrez; Fernando Rodríguez de Fonseca; Juan Suárez

Soy extracts have been claimed to be neuroprotective against brain insults, an effect related to the estrogenic properties of isoflavones. However, the effects of individual isoflavones on obesity-induced disruption of adult neurogenesis have not yet been analyzed. In the present study we explore the effects of pharmacological administration of daidzein, a main soy isoflavone, in cell proliferation, cell apoptosis and gliosis in the adult hippocampus of animals exposed to a very high-fat diet. Rats made obese after 12-week exposure to a standard or high-fat (HFD, 60%) diets were treated with daidzein (50 mg kg−1) for 13 days. Then, plasma levels of metabolites and metabolic hormones, cell proliferation in the subgranular zone of the dentate gyrus (SGZ), and immunohistochemical markers of hippocampal cell apoptosis (caspase-3), gliosis (GFAP and Iba-1), food reward factor FosB and estrogen receptor alpha (ERα) were analyzed. Treatment with daidzein reduced food/caloric intake and body weight gain in obese rats. This was associated with glucose tolerance, low levels of HDL-cholesterol, insulin, adiponectin and testosterone, and high levels of leptin and 17β-estradiol. Daidzein increased the number of phospho-histone H3 and 5-bromo-2-deoxyuridine (BrdU)-ir cells detected in the SGZ of standard diet and HFD-fed rats. Daidzein reversed the HFD-associated enhanced immunohistochemical expression of caspase-3, FosB, GFAP, Iba-1 and ERα in the hippocampus, being more prominent in the dentate gyrus. These results suggest that pharmacological treatment with isoflavones regulates metabolic alterations associated with enhancement of cell proliferation and reduction of apoptosis and gliosis in response to high-fat diet.


Molecular Brain Research | 1994

Analysis of the secretory glycoproteins of the subcommissural organ of the dogfish (Scyliorhinus canicula)

J. M. Grondona; J. Pérez; Manuel Cifuentes; M.D. López-Avalos; F. Nualart; B. Peruzzo; P. Fernández-Llebrez; Esteban M. Rodríguez

The subcomissural organ (SCO) is an ancient and conserved brain gland secreting glycoproteins into the cerebrospinal fluid which condense to form Reissners fiber (RF). The SCO of an elasmobranch species, the dogfish Scyliorhinus canicula, was investigated applying morphological and biochemical methods. The SCO of 34 dogfishes were processed for the following techniques: (1) conventional transmission electron microscopy; (2) light and electron microscopy lectin histochemistry (Concanavalin A, Con A; wheat germ agglutinin, WGA; Limax flavus agglutinin, LFA); (3) light and electron microscopy immunocytochemistry using antisera raised against the glycoproteins of the bovine RF (anti-bovine RF), and the secretory material of the dogfish SCO (anti-dogfish SCO). The former reacts with the SCO of virtually all vertebrate species [19] (conserved epitopes); the latter reacts only with the SCO of elasmobranchs [Cell Tissue Res., 276 (1994) 515-522] (class-specific epitopes). At the light microscopic level both antisera immunoreacted selectively with the SCO and RF; no other structure of the central nervous system was reactive. Within the SCO the binding sites for WGA (affinity = glucosamine, sialic acid) and LFA (affinity = sialic acid) displayed the same density and intracellular distribution. At the ultrastructural level two types of granules were distinguished. Type I granules (200-400 nm) were numerous, reacted with both antisera, bound WGA but not Con A. Type II granules (0.8-1.8 microns) reacted with the anti-bovine RF serum but not with the anti-dogfish SCO serum, bound Con A and WGA. The content of dilated cisternae of the rough endoplasmic reticulum reacted with both antisera and bound Con A; it did not bind WGA. The SCOs of 4500 dogfishes were extracted in ammonium bicarbonate. This extract was used for SDS-PAGE and blotting. Blots were processed for immunolabeling using anti-bovine RF and anti-dogfish SCO sera, and for lectin binding (Con A, WGA and LFA). The anti-bovine RF revealed four compounds with apparent molecular weights of 750, 380, 145 and 35 kDa. The two former also reacted with the anti-dogfish SCO serum and bound Con A. Only the 380 kDa compound bound WGA and LFA. The findings indicate that both the conserved and the class-specific epitopes are part of the same compounds (780, 380 kDa), which would be stored in type I granules. The lectin binding properties of these compounds point to the 780 kDa compound as a precursor form and the 380 kDa polypeptide as a processed form.


European Journal of Neuroscience | 2013

Diet-dependent modulation of hippocampal expression of endocannabinoid signaling-related proteins in cannabinoid antagonist-treated obese rats

Patricia Rivera; María Jesús Luque-Rojas; Antoni Pastor; Eduardo Blanco; Francisco Javier Pavón; Antonia Serrano; Ana Crespillo; Margarita Vida; J. M. Grondona; Manuel Cifuentes; Francisco Javier Bermúdez-Silva; Rafael de la Torre; Fernando Rodríguez de Fonseca; Juan Suárez

Diet‐induced obesity produces changes in endocannabinoid signaling (ECS), influencing the regulation of energy homeostasis. Recently, we demonstrated that, in high‐fat‐diet‐fed rats, blockade of CB1 receptor by AM251 not only reduced body weight but also increased adult neurogenesis in the hippocampus, suggesting an influence of diet on hippocampal cannabinoid function. To further explore the role of hippocampal ECS in high‐fat‐diet‐induced obesity, we investigated whether the immunohistochemical expression of the enzymes that produce (diacylglycerol lipase alpha and N‐acyl phosphatidylethanolamine phospholipase D) and degrade (monoacylglycerol lipase and fatty acid amino hydrolase) endocannabinoids may be altered in the hippocampus of AM251 (3 mg/kg)‐treated rats fed three different diets: standard diet (normal chow), high‐carbohydrate diet (70% carbohydrate) and high‐fat diet (60% fat). Results indicated that AM251 reduced caloric intake and body weight gain, and induced a modulation of the expression of ECS‐related proteins in the hippocampus of animals exposed to hypercaloric diets. These effects were differentially restricted to either the 2‐arachinodoyl glycerol or anandamide signaling pathways, in a diet‐dependent manner. AM251‐treated rats fed the high‐carbohydrate diet showed a reduction of the diacylglycerol lipase alpha : monoacylglycerol lipase ratio, whereas AM251‐treated rats fed the high‐fat diet showed a decrease of the N‐acyl phosphatidylethanolamine phospholipase D : fatty acid amino hydrolase ratio. These results are consistent with the reduced levels of hippocampal endocannabinoids found after food restriction. Regarding the CB1 expression, AM251 induced specific changes focused in the CA1 stratum pyramidale of high‐fat‐diet‐fed rats. These findings indicated that the cannabinoid antagonist AM251 modulates ECS‐related proteins in the rat hippocampus in a diet‐specific manner. Overall, these results suggest that the hippocampal ECS participates in the physiological adaptations to different caloric diets.


Cell and Tissue Research | 1998

Quantification of the secretory glycoproteins of the subcommissural organ by a sensitive sandwich ELISA with a polyclonal antibody and a set of monoclonal antibodies against the bovine Reissner’s fiber

Guillermo Estivill-Torrús; Manuel Cifuentes; J. M. Grondona; Elena Miranda; Francisco Javier Bermúdez-Silva; P. Fernández-Llebrez; J. Pérez

Abstract The subcommissural organ (SCO) is an ependymal brain gland that releases glycoproteins into the ventricular cerebrospinal fluid where they condense to form the Reissner’s fiber (RF). We have developed a highly sensitive and specific two-antibody sandwich enzyme-linked immunosorbent assay (ELISA) for the quantification of the bovine SCO secretory material. The assay was based on the use of the IgG fraction of a polyclonal antiserum against the bovine RF as capture antibody and a pool of three peroxidase-labeled monoclonal antibodies that recognize non-overlapping epitopes of the RF glycoproteins as detection antibody. The detection limit was 1 ng/ml and the working range extended from 1 to 4000 ng/ml. The calibration curve, generated with RF glycoproteins, showed two linear segments: one of low sensitivity, ranging from 1 to 125 ng/ml, and the other of high sensitivity between 125 and 4000 ng/ml. This assay was highly reproducible (mean intra- and interassay coefficient of variation 2.2% and 5.3%, respectively) and its detectability and sensitivity were higher than those of ELISAs using exclusively either polyclonal or monoclonal antibodies against RF glycoproteins. The assay succeeded in detecting and measuring secretory material in crude extracts of bovine SCO, culture medium supernatant of SCO explants and incubation medium of bovine RF; however, soluble secretory material was not detected in bovine cerebrospinal fluid.

Collaboration


Dive into the J. M. Grondona's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Pérez

University of Málaga

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge