J. M. Kovac
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. M. Kovac.
Physical Review Letters | 2014
Peter A. R. Ade; R. W. Aikin; D. Barkats; S. J. Benton; C. A. Bischoff; J. J. Bock; J. A. Brevik; I. Buder; E. Bullock; C. D. Dowell; L. Duband; J. Filippini; S. Fliescher; S. R. Golwala; M. Halpern; Matthew Hasselfield; S. R. Hildebrandt; G. C. Hilton; V. V. Hristov; K. D. Irwin; K. S. Karkare; J. P. Kaufman; Brian Keating; S. A. Kernasovskiy; J. M. Kovac; Chao-Lin Kuo; E. M. Leitch; M. Lueker; P. Mason; C. B. Netterfield
We report results from the BICEP2 experiment, a cosmic microwave background (CMB) polarimeter specifically designed to search for the signal of inflationary gravitational waves in the B-mode power spectrum around ℓ∼80. The telescope comprised a 26 cm aperture all-cold refracting optical system equipped with a focal plane of 512 antenna coupled transition edge sensor 150 GHz bolometers each with temperature sensitivity of ≈300 μK(CMB)√s. BICEP2 observed from the South Pole for three seasons from 2010 to 2012. A low-foreground region of sky with an effective area of 380 square deg was observed to a depth of 87 nK deg in Stokes Q and U. In this paper we describe the observations, data reduction, maps, simulations, and results. We find an excess of B-mode power over the base lensed-ΛCDM expectation in the range 30 < ℓ < 150, inconsistent with the null hypothesis at a significance of >5σ. Through jackknife tests and simulations based on detailed calibration measurements we show that systematic contamination is much smaller than the observed excess. Cross correlating against WMAP 23 GHz maps we find that Galactic synchrotron makes a negligible contribution to the observed signal. We also examine a number of available models of polarized dust emission and find that at their default parameter values they predict power ∼(5-10)× smaller than the observed excess signal (with no significant cross-correlation with our maps). However, these models are not sufficiently constrained by external public data to exclude the possibility of dust emission bright enough to explain the entire excess signal. Cross correlating BICEP2 against 100 GHz maps from the BICEP1 experiment, the excess signal is confirmed with 3σ significance and its spectral index is found to be consistent with that of the CMB, disfavoring dust at 1.7σ. The observed B-mode power spectrum is well fit by a lensed-ΛCDM+tensor theoretical model with tensor-to-scalar ratio r = 0.20_(-0.05)(+0.07), with r = 0 disfavored at 7.0σ. Accounting for the contribution of foreground, dust will shift this value downward by an amount which will be better constrained with upcoming data sets.
The Astrophysical Journal | 2002
N. W. Halverson; E. M. Leitch; C. Pryke; J. M. Kovac; J. E. Carlstrom; W. L. Holzapfel; M. Dragovan; J. K. Cartwright; B. S. Mason; S. Padin; T. J. Pearson; A. C. S. Readhead; M. C. Shepherd
We present measurements of anisotropy in the cosmic microwave background (CMB) from the first season of observations with the Degree Angular Scale Interferometer (DASI). The instrument was deployed at the South Pole in the austral summer 1999-2000, and we made observations throughout the following austral winter. We present a measurement of the CMB angular power spectrum in the range 100 < l < 900 in nine bands with fractional uncertainties in the range 10%-20% and dominated by sample variance. In this paper, we review the formalism used in the analysis, in particular the use of constraint matrices to project out contaminants such as ground and point source signals and to test for correlations with diffuse foreground templates. We find no evidence of foregrounds other than point sources in the data, and we find a maximum likelihood temperature spectral index β = -0.1 ± 0.2 (1 σ), consistent with CMB. We detect a first peak in the power spectrum at l ~ 200, in agreement with previous experiments. In addition, we detect a peak in the power spectrum at l ~ 550 and power of similar magnitude at l ~ 800, which are consistent with the second and third harmonic peaks predicted by adiabatic inflationary cosmological models.
Nature | 2002
J. M. Kovac; E. M. Leitch; C. Pryke; J. E. Carlstrom; N. W. Halverson; W. L. Holzapfel
The past several years have seen the emergence of a standard cosmological model, in which small temperature differences in the cosmic microwave background (CMB) radiation on angular scales of the order of a degree are understood to arise from acoustic oscillations in the hot plasma of the early Universe, arising from primordial density fluctuations. Within the context of this model, recent measurements of the temperature fluctuations have led to profound conclusions about the origin, evolution and composition of the Universe. Using the measured temperature fluctuations, the theoretical framework predicts the level of polarization of the CMB with essentially no free parameters. Therefore, a measurement of the polarization is a critical test of the theory and thus of the validity of the cosmological parameters derived from the CMB measurements. Here we report the detection of polarization of the CMB with the Degree Angular Scale Interferometer (DASI). The polarization is deteced with high confidence, and its level and spatial distribution are in excellent agreement with the predictions of the standard theory.
Physical Review Letters | 2016
Peter A. R. Ade; Z. Ahmed; R. W. Aikin; K. D. Alexander; D. Barkats; S. J. Benton; C. A. Bischoff; J. J. Bock; R. Bowens-Rubin; J. A. Brevik; I. Buder; E. Bullock; V. Buza; J. Connors; B. P. Crill; L. Duband; Cora Dvorkin; J. Filippini; S. Fliescher; J. A. Grayson; M. Halpern; S. Harrison; G. C. Hilton; H. Hui; K. D. Irwin; K. S. Karkare; E. Karpel; J. P. Kaufman; Brian Keating; S. Kefeli
We present results from an analysis of all data taken by the BICEP2 and Keck Array cosmic microwave background (CMB) polarization experiments up to and including the 2014 observing season. This includes the first Keck Array observations at 95 GHz. The maps reach a depth of 50 nK deg in Stokes Q and U in the 150 GHz band and 127 nK deg in the 95 GHz band. We take auto- and cross-spectra between these maps and publicly available maps from WMAP and Planck at frequencies from 23 to 353 GHz. An excess over lensed ΛCDM is detected at modest significance in the 95×150 BB spectrum, and is consistent with the dust contribution expected from our previous work. No significant evidence for synchrotron emission is found in spectra such as 23×95, or for correlation between the dust and synchrotron sky patterns in spectra such as 23×353. We take the likelihood of all the spectra for a multicomponent model including lensed ΛCDM, dust, synchrotron, and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r) using priors on the frequency spectral behaviors of dust and synchrotron emission from previous analyses of WMAP and Planck data in other regions of the sky. This analysis yields an upper limit r_{0.05}<0.09 at 95% confidence, which is robust to variations explored in analysis and priors. Combining these B-mode results with the (more model-dependent) constraints from Planck analysis of CMB temperature plus baryon acoustic oscillations and other data yields a combined limit r_{0.05}<0.07 at 95% confidence. These are the strongest constraints to date on inflationary gravitational waves.Keck Array and BICEP2 Collaborations: P. A. R. Ade, Z. Ahmed, 3 R. W. Aikin, K. D. Alexander, D. Barkats, S. J. Benton, C. A. Bischoff, J. J. Bock, 7 R. Bowens-Rubin, J. A. Brevik, I. Buder, E. Bullock, V. Buza, 9 J. Connors, B. P. Crill, L. Duband, C. Dvorkin, J. P. Filippini, 11 S. Fliescher, J. Grayson, M. Halpern, S. Harrison, G. C. Hilton, H. Hui, K. D. Irwin, 2, 14 K. S. Karkare, E. Karpel, J. P. Kaufman, B. G. Keating, S. Kefeli, S. A. Kernasovskiy, J. M. Kovac, 9, ∗ C. L. Kuo, 2 E. M. Leitch, M. Lueker, K. G. Megerian, C. B. Netterfield, 17 H. T. Nguyen, R. O’Brient, 7 R. W. Ogburn IV, 2 A. Orlando, 15 C. Pryke, 8, † S. Richter, R. Schwarz, C. D. Sheehy, 16 Z. K. Staniszewski, 7 B. Steinbach, R. V. Sudiwala, G. P. Teply, 15 K. L. Thompson, 2 J. E. Tolan, C. Tucker, A. D. Turner, A. G. Vieregg, 18, 16 A. C. Weber, D. V. Wiebe, J. Willmert, C. L. Wong, 9 W. L. K. Wu, and K. W. Yoon 2 School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, United Kingdom Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, California 94025, USA Department of Physics, Stanford University, Stanford, California 94305, USA Department of Physics, California Institute of Technology, Pasadena, California 91125, USA Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS 42, Cambridge, Massachusetts 02138, USA Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7, Canada Jet Propulsion Laboratory, Pasadena, California 91109, USA Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA Department of Physics, Harvard University, Cambridge, MA 02138, USA Service des Basses Températures, Commissariat à l’Energie Atomique, 38054 Grenoble, France Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada National Institute of Standards and Technology, Boulder, Colorado 80305, USA Department of Physics, University of California at San Diego, La Jolla, California 92093, USA Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1Z8, Canada Department of Physics, Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA (Published in PRL 20 January 2016)
The Astrophysical Journal | 2003
B. S. Mason; Timothy J. Pearson; A. C. S. Readhead; M. C. Shepherd; J. L. Sievers; Patricia Simcoe Udomprasert; J. K. Cartwright; Alison J. Farmer; S. Padin; S. T. Myers; J. R. Bond; C. R. Contaldi; U.-L. Pen; S. Prunet; Dmitri Pogosyan; J. E. Carlstrom; J. M. Kovac; E. M. Leitch; C. Pryke; N. W. Halverson; W. L. Holzapfel; P. Altamirano; Leonardo Bronfman; S. Casassus; J. May; M. Joy
We report measurements of anisotropy in the cosmic microwave background radiation over the multipole range l 200 3500 with the Cosmic Background Imager based on deep observations of three fields. These results confirm the drop in power with increasing l first reported in earlier measurements with this instrument and extend the observations of this decline in power out to l 2000. The decline in power is consistent with the predicted damping of primary anisotropies. At larger multipoles, l 1⁄4 2000 3500, the power is 3.1 greater than standard models for intrinsic microwave background anisotropy in this multipole range and 3.5 greater than zero. This excess power is not consistent with expected levels of residual radio source contamination but, for 8e1, is consistent with predicted levels of a secondary Sunyaev-Zeldovich anisotropy. Further observations are necessary to confirm the level of this excess and, if confirmed, determine its origin. Subject headings: cosmic microwave background — cosmology: observations
The Astrophysical Journal | 2002
C. Pryke; N. W. Halverson; E. M. Leitch; J. M. Kovac; J. E. Carlstrom; W. L. Holzapfel; M. Dragovan
The Degree Angular Scale Interferometer (\dasi) has measured the power spectrum of the Cosmic Microwave Background anisotropy over the range of spherical harmonic multipoles 100 0.45 and 0.0<=tau_c<=0.4, we find that the total density of the Universe Omega_tot=1.04+/-0.06, and the spectral index of the initial scalar fluctuations n_s=1.01+0.08-0.06, in accordance with the predictions of inflationary theory. In addition we find that the physical density of baryons Omega_b.h^2=0.022+0.004-0.003, and the physical density of cold dark matter Omega_cdm.h^2=0.14+/-0.04. This value of Omega_b.h^2 is consistent with that derived from measurements of the primordial abundance ratios of the light elements combined with big bang nucleosynthesis theory. Using the result of the HST Key Project h=0.72+/-0.08 we find that Omega_t=1.00+/-0.04, the matter density Omega_m=0.40+/-0.15, and the vacuum energy density Omega_lambda=0.60+/-0.15. (All 68% confidence limits.)The Degree Angular Scale Interferometer (DASI) has measured the power spectrum of the cosmic microwave background anisotropy over the range of spherical harmonic multipoles 100 0.45 and 0.0 ≤ τc ≤ 0.4, we find that the total density of the universe Ωtot = 1.04 ± 0.06 and the spectral index of the initial scalar fluctuations ns = 1.01 in accordance with the predictions of inflationary theory. In addition, we find that the physical density of baryons Ωbh2 = 0.022, and the physical density of cold dark matter Ωcdmh2 = 0.14 ± 0.04. This value of Ωbh2 is consistent with that derived from measurements of the primeval deuterium abundance combined with big bang nucleosynthesis theory. Using the result of the Hubble Space Telescope (HST) Key Project, h = 0.72 ± 0.08, we find that Ωtot = 1.00 ± 0.04, the matter density Ωm = 0.40 ± 0.15, and the vacuum energy density ΩΛ = 0.60 ± 0.15. (All 68% confidence limits.)
The Astrophysical Journal | 2009
Michael L. Brown; Peter A. R. Ade; James J. Bock; Melanie Bowden; G. Cahill; P. G. Castro; S. Church; T. Culverhouse; R. B. Friedman; K. Ganga; Walter Kieran Gear; Sujata Gupta; J. Hinderks; J. M. Kovac; A. E. Lange; E. M. Leitch; S. J. Melhuish; Y. Memari; J. A. Murphy; A. Orlando; C. O’Sullivan; L. Piccirillo; C. Pryke; Nutan J. Rajguru; B. Rusholme; R. Schwarz; Andy Taylor; K. L. Thompson; A. H. Turner; E. Y. S. Wu
We present an improved analysis of the final data set from the QUaD experiment. Using an improved technique to remove ground contamination, we double the effective sky area and hence increase the precision of our cosmic microwave background (CMB) power spectrum measurements by ~30% versus that previously reported. In addition, we have improved our modeling of the instrument beams and have reduced our absolute calibration uncertainty from 5% to 3.5% in temperature. The robustness of our results is confirmed through extensive jackknife tests, and by way of the agreement that we find between our two fully independent analysis pipelines. For the standard six-parameter ΛCDM model, the addition of QUaD data marginally improves the constraints on a number of cosmological parameters over those obtained from the WMAP experiment alone. The impact of QUaD data is significantly greater for a model extended to include either a running in the scalar spectral index, or a possible tensor component, or both. Adding both the QUaD data and the results from the Arcminute Cosmology Bolometer Array Receiver experiment, the uncertainty in the spectral index running is reduced by ~25% compared to WMAP alone, while the upper limit on the tensor-to-scalar ratio is reduced from r < 0.48 to r < 0.33 (95% c.l.). This is the strongest limit on tensors to date from the CMB alone. We also use our polarization measurements to place constraints on parity-violating interactions to the surface of last scattering, constraining the energy scale of Lorentz violating interactions to <1.5 × 10^(–43) GeV (68% c.l.). Finally, we place a robust upper limit on the strength of the lensing B-mode signal. Assuming a single flat band power between l = 200 and l = 2000, we constrain the amplitude of B-modes to be <0.57 μK^2 (95% c.l.).
The Astrophysical Journal | 2010
H. C. Chiang; Peter A. R. Ade; D. Barkats; J. Battle; E. M. Bierman; J. J. Bock; C. D. Dowell; L. Duband; E. Hivon; W. L. Holzapfel; V. V. Hristov; W. C. Jones; Brian Keating; J. M. Kovac; C. L. Kuo; A. E. Lange; Erik M. Leitch; P. V. Mason; T. Matsumura; H. T. Nguyen; N. Ponthieu; C. Pryke; S. Richter; G. Rocha; C. Sheehy; Y. D. Takahashi; J. E. Tolan; K. W. Yoon
Background Imaging of Cosmic Extragalactic Polarization (BICEP) is a bolometric polarimeter designed to measure the inflationary B-mode polarization of the cosmic microwave background (CMB) at degree angular scales. During three seasons of observing at the South Pole (2006 through 2008), BICEP mapped ~2% of the sky chosen to be uniquely clean of polarized foreground emission. Here, we present initial results derived from a subset of the data acquired during the first two years. We present maps of temperature, Stokes Q and U, E and B modes, and associated angular power spectra. We demonstrate that the polarization data are self-consistent by performing a series of jackknife tests. We study potential systematic errors in detail and show that they are sub-dominant to the statistical errors. We measure the E-mode angular power spectrum with high precision at 21 ≤ l ≤ 335, detecting for the first time the peak expected at l ~ 140. The measured E-mode spectrum is consistent with expectations from a ΛCDM model, and the B-mode spectrum is consistent with zero. The tensor-to-scalar ratio derived from the B-mode spectrum is r = 0.02^(+0.31)_(–0.26), or r < 0.72 at 95% confidence, the first meaningful constraint on the inflationary gravitational wave background to come directly from CMB B-mode polarization.
Astroparticle Physics | 2015
K. N. Abazajian; K. Arnold; J. E. Austermann; B. A. Benson; C. Bischoff; J. Bock; J. R. Bond; J. Borrill; I. Buder; D. L. Burke; E. Calabrese; J. E. Carlstrom; C. S. Carvalho; C. L. Chang; H. C. Chiang; S. Church; A. Cooray; T. M. Crawford; B. P. Crill; Kyle S. Dawson; S. Das; M. J. Devlin; M. Dobbs; Scott Dodelson; O. Doré; Joanna Dunkley; J. L. Feng; A. Fraisse; J. Gallicchio; S. B. Giddings
This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ(σmν) = 16 meV and σ(Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero σmν, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics — the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff=3.046.
The Astrophysical Journal | 2014
Peter A. R. Ade; R. W. Aikin; M. Amiri; Denis Barkats; S. J. Benton; C. A. Bischoff; J. J. Bock; J. A. Brevik; I. Buder; E. Bullock; G. R. Davis; P. K. Day; C. D. Dowell; L. Duband; J. Filippini; S. Fliescher; S. R. Golwala; M. Halpern; M. Hasselfield; S. R. Hildebrandt; G. C. Hilton; K. D. Irwin; K. S. Karkare; J. P. Kaufman; Brian Keating; S. A. Kernasovskiy; J. M. Kovac; Chao-Lin Kuo; Erik M. Leitch; Nuria Llombart
We report on the design and performance of the BICEP2 instrument and on its three-year data set. BICEP2 was designed to measure the polarization of the cosmic microwave background (CMB) on angular scales of 1°-5°(l = 40-200), near the expected peak of the B-mode polarization signature of primordial gravitational waves from cosmic inflation. Measuring B-modes requires dramatic improvements in sensitivity combined with exquisite control of systematics. The BICEP2 telescope observed from the South Pole with a 26 cm aperture and cold, on-axis, refractive optics. BICEP2 also adopted a new detector design in which beam-defining slot antenna arrays couple to transition-edge sensor (TES) bolometers, all fabricated on a common substrate. The antenna-coupled TES detectors supported scalable fabrication and multiplexed readout that allowed BICEP2 to achieve a high detector count of 500 bolometers at 150 GHz, giving unprecedented sensitivity to B-modes at degree angular scales. After optimization of detector and readout parameters, BICEP2 achieved an instrument noise-equivalent temperature of