J.M. Warne
University of Manchester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J.M. Warne.
Comparative Biochemistry and Physiology B | 2002
J.M. Warne; K.E. Harding; Richard J. Balment
The two major basic neurohypophysial peptides, arginine vasopressin (AVP) of mammals and arginine vasotocin (AVT) of all non-mammalian vertebrates, share common structure and major roles in regulating renal function. In this review the complexity of AVP actions within the mammalian kidney is discussed and comparisons are made with the emerging picture of AVTs renal effects in fish. It has become apparent that the antidiuretic action of the neurohypophysial hormones is an ancient phylogenetic phenomenon, although this is based upon reduced glomerular filtration in fish by comparison with predominant tubular effects in mammals. Nonetheless, there appears to be retention of AVP effects upon the functional heterogeneity of nephron populations in mammals. Preliminary evidence for the possible existence of V(2)-type (tubular) neurohypophysial hormone receptors in fish, implies possible AVT actions which parallel those in mammals on tubular ion transport. Further insight from recent mammalian tubule microperfusion studies suggests that in teleost fish both apical (tubular lumen) and basolateral (blood borne) AVT have the potential to modulate renal function, though this remains to be examined.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2001
Chris M. Wood; J.M. Warne; Yuxiang Wang; M. Danielle McDonald; Richard J. Balment; Pierre Laurent; Patrick J. Walsh
Previous work has shown that pulsatile urea excretion at the gills of the gulf toadfish is due to periodic activation of a facilitated diffusion transport system with molecular and pharmacological similarity to the UT-A transport system of the mammalian kidney. In mammals, AVP and glucocorticoids are two important endocrine regulators of this system. The present study focused on the potential role of circulating AVT (the teleost homologue of AVP) and cortisol levels as possible triggers for urea pulses. Long-term (34-84 h) monitoring of plasma levels by repetitive sampling at 2-h intervals from chronic cannulae in individual toadfish demonstrated that circulating AVT concentrations are low (10(-12)-10(-11) M), and show no relationship to the occurrence of natural urea pulses. In contrast, plasma cortisol levels decline greatly prior to natural pulses and rise rapidly thereafter. AVT injections into the caudal artery or ventral aorta elicited pulse events, but these were extremely small (1-10%) relative to natural pulses, and occurred only at unphysiological dose levels (10(-9) M in the plasma). AVP was a partial agonist, but isotocin, insulin-like growth factor-1, and atrial natriuretic peptide were without effect at the same concentration. Artificially raising plasma cortisol levels by cortisol injection tended to reduce responsiveness to AVT. Pharmacological reduction of plasma cortisol levels by metyrapone injection elicited small pulses similar to those caused by AVT. Following such pulse events, AVT was ineffective in inducing pulses. We conclude that decreases in circulating cortisol play an important permissive role in urea pulsing, but that circulating AVT levels are not involved.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2001
Ewa Kulczykowska; J.M. Warne; Richard J. Balment
Chronically catheterised, free swimming flounder (Platichthys flesus) have been used in experiments examining the day-night variations in circulating levels of melatonin (Mel) and arginine vasotocin (AVT). Under normal photoperiod (16 h light/8 h dark) serial blood samples taken from individual fish demonstrated a Mel rhythm with daytime levels at 09.00 and 15.00 h (238+/-14 and 179+/-12 fmol x ml(-1), respectively) lower than those at 23.00 h (1920+/-128 fmol x ml(-1)). Maintenance of fish in 24-h light abolished the light/dark Mel rhythm and circulating levels were comparable to those measured during the day in fish under normal photoperiod illumination. In fish maintained under 24 h dark, although a daily rhythm was still apparent, at the time when it would be normally dark, plasma Mel concentration was reduced and at times when it would be normally light, levels were higher than in fish maintained under normal light/dark illumination. Plasma AVT concentrations were higher in fish during the day (4.4+/-0.8 fmol x ml(-1)) than those at night (1.5+/-0.4 fmol x ml(-1)), the opposite to that seen with Mel. During acute study infusion of AVT resulted in reduced levels of plasma Mel, although this did not achieve statistical significance. Infusion of Mel did not alter circulating AVT concentration.
General and Comparative Endocrinology | 2003
Richard J. Balment; J.M. Warne; Yoshio Takei
A novel angiotensin I (ANG I) has been isolated from incubates of plasma and kidney extracts of the flounder, Platichthys flesus, using ion-exchange, gel-permeation, and reverse-phase high performance liquid chromatography (HPLC). Its sequence was determined as H-Asn-Arg-Val-Tyr-Ile-His-Pro-Phe-Thr-Leu-OH by sequence analysis and mass spectrometry. No vasopressor activity was detected at the elution position of [Asp(1)] ANG I in ion-exchange HPLC. The sequence was confirmed by identity of the elution position with the synthetic peptide in two different HPLC systems. When compared with ANG I isolated from other teleost fish, flounder ANG I uniquely has an isoleucine at position 5 rather than valine. Injection of angiotensin II (ANG II) into chronically cannulated flounder resulted in a dose-dependent pressor response, native [Asn(1),Ile(5)] ANG II, was found to elicit pressor responses comparable with those seen when teleost [Asn(1),Val(5)] ANG II and human [Asp(1),Ile(5)] ANG II were injected into flounder over the dose range 0.02-1.00 nmol/kg(-1). Plasma concentrations of the neurohypophysial peptide AVT were measured in chronically cannulated flounder following the injection of ANG II to examine the effect of ANG II on circulating AVT concentration. The injection of [Asn(1),Ile(5)] ANG II (1 nmolkg(-1)) or [Asp(1),Ile(5)] ANG II (2.5 nmolkg(-1)) resulted in a significant fall in the circulating levels of AVT suggesting that ANG II either directly or indirectly negatively influences AVT secretion.
Fish Physiology and Biochemistry | 1997
K.E. Harding; J.M. Warne; Susumu Hyodo; Richard J. Balment
Radioimmunoassay measurement of pituitary AVT content and plasma AVT concentration indicated comparable levels in fully adapted sea water (SW) and fresh water (FW) flounders. Circulating AVT represented less than 0.1% of the pituitary AVT reserve. The urophysis contained AVT but the total content was only 2 or 3 fold that of circulating AVT. In fish adapted to hypertonic media, there was a close correlation between plasma AVT concentration and plasma Na+ concentration or osmolality. The present study examined the effects of acute osmotic challenge, associated with FW to SW transfer, and the influence of extracellular fluid volume status on AVT secretion. Short-term transfer of fish from FW to SW (up to 3 days) did not evoke a clear change in plasma AVT levels, though pituitary content was reduced at 24 h. During the first 3 days after transfer to SW, only small increments in plasma tonicity were apparent. The sensitivity of AVT secretion to osmotic stimuli may only be expressed when plasma osmolality has exceeded a specific threshold, which was probably not reached in these transfer studies. Fish in hypotonic media showed no relationship between plasma osmolality/tonicity and plasma AVT concentration. Acute extracellular fluid volume expansion of SW adapted fish also abolished the normally observed relationship between plasma osmolality and AVT concentration in these hypertonic media fish. This trend indicates that volume status may modulate the sensitivity of AVT secretion to osmotic stimuli as occurs in tetrapods.
Annals of the New York Academy of Sciences | 2005
E. Weybourne; J.M. Warne; Hartmut Hentschel; Marlies Elger; Richard J. Balment
Abstract: The current study characterized tubular segmentation of the European flounder nephron and localized the vasotocin receptor expression by immunohistochemistry. Flounder nephron was shown to comprise a prominent renal corpuscle, short neck segment, proximal tubule I, proximal tubule II, collecting tubule, and collecting duct. Using specific antibodies raised against flounder vasotocin receptor, specific V1 receptor staining was detected within the glomeruli, the endothelial surface of the afferent and efferent arterioles, and the capillaries surrounding the collecting duct system. Immunostaining for the receptor was exclusively vascular and there did not appear to be a tubular component.
General and Comparative Endocrinology | 2006
Richard J. Balment; Weiqun Lu; E. Weybourne; J.M. Warne
Endocrinology | 2004
Weiqun Lu; Louise Dow; Sarah Gümüsgöz; Mj Brierley; J.M. Warne; Catherine R. McCrohan; Richard J. Balment; Daniela Riccardi
General and Comparative Endocrinology | 2002
Matthew J. Winter; J.M. Warne; Catherine R. McCrohan; Richard J. Balment
General and Comparative Endocrinology | 2001
J.M. Warne