J. Martignac
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Martignac.
Astronomy and Astrophysics | 2010
A. Poglitsch; C. Waelkens; N. Geis; Helmut Feuchtgruber; B. Vandenbussche; L. Rodriguez; O. Krause; E. Renotte; C. Van Hoof; P. Saraceno; J. Cepa; Franz Kerschbaum; P. Agnèse; B. Ali; B. Altieri; Paola Andreani; J.-L. Augueres; Zoltan Balog; L. Barl; O. H. Bauer; N. Belbachir; M. Benedettini; N. Billot; Olivier Boulade; Horst Bischof; J. A. D. L. Blommaert; E. Callut; C. Cara; R. Cerulli; D. Cesarsky
The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESAs far infrared and submil- limetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16 × 25 pixels, each, and two filled silicon bolometer arrays with 16 × 32 and 32 × 64 pixels, respectively, to perform integral-field spectroscopy and imaging photom- etry in the 60−210 μm wavelength regime. In photometry mode, it simultaneously images two bands, 60−85 μ mo r 85−125 μ ma nd 125−210 μm, over a field of view of ∼1.75 � × 3.5 � , with close to Nyquist beam sampling in each band. In spectroscopy mode, it images afi eld of 47 �� × 47 �� , resolved into 5 × 5 pixels, with an instantaneous spectral coverage of ∼ 1500 km s −1 and a spectral resolution of ∼175 km s −1 . We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the performance verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions.
Proceedings of SPIE | 2010
Mark Cropper; Sabrina Pottinger; S. Niemi; J. Denniston; R. Cole; Magdalena B. Szafraniec; Y. Mellier; Michel Berthe; J. Martignac; C. Cara; A. M. di Giorgio; A. Sciortino; S. Paltani; L. Genolet; J.-J. Fourmand; M. Charra; P. Guttridge; B. Winter; James Endicott; Andrew D. Holland; Jason Gow; Neil J. Murray; David J. Hall; Jérôme Amiaux; R. J. Laureijs; Giuseppe Racca; Jean-Christophe Salvignol; A. Short; J. Lorenzo Alvarez; Thomas D. Kitching
Euclid-VIS is the large format visible imager for the ESA Euclid space mission in their Cosmic Vision program, scheduled for launch in 2020. Together with the near infrared imaging within the NISP instrument, it forms the basis of the weak lensing measurements of Euclid. VIS will image in a single r+i+z band from 550-900 nm over a field of view of ~0.5 deg2. By combining 4 exposures with a total of 2260 sec, VIS will reach to deeper than mAB=24.5 (10σ) for sources with extent ~0.3 arcsec. The image sampling is 0.1 arcsec. VIS will provide deep imaging with a tightly controlled and stable point spread function (PSF) over a wide survey area of 15000 deg2 to measure the cosmic shear from nearly 1.5 billion galaxies to high levels of accuracy, from which the cosmological parameters will be measured. In addition, VIS will also provide a legacy dataset with an unprecedented combination of spatial resolution, depth and area covering most of the extra-Galactic sky. Here we will present the results of the study carried out by the Euclid Consortium during the period up to the Critical Design Review.
Astronomical Telescopes and Instrumentation | 2003
B. M. Swinyard; Kjetil Dohlen; Didier Ferand; J.-P. Baluteau; D. Pouliquen; Pascal Dargent; Guy Michel; J. Martignac; Peter A. R. Ade; Peter Charles Hargrave; Matthew Joseph Griffin; Donald E. Jennings; Martin E. Caldwell
The design of the Fourier Transform Spectrometer for the Herschel sub-millimetre Spectral and Photometric Imaging Receiver (SPIRE) is described. This is an innovative design for a sub-millimetre spectrometer as it uses intensity beam splitters in a Mach-Zehnder configuration rather than the traditional polarising beam splitters. The instrument is required to have a resolution of 0.04 cm-1; have a relatively large field of view (2.6 arcmin circular) and cover a large wavelength range - 200 to 670 microns. These performance requirements lay stringent requirements on all aspects of the design. The details of the optical; mechanical and electrical implementation of the instrument are discussed in the light of the science and engineering requirements and laboratory testing on development models of the mechanism and control system are reported.
Proceedings of SPIE | 2005
P. Ferrando; A. Goldwurm; Philippe Laurent; O. Limousin; J. Martignac; F. Pinsard; Yvon Rio; J.P. Roques; Oberto Citterio; Giovanni Pareschi; G. Tagliaferri; F. Fiore; G. Malaguti; Ulrich G. Briel; G. Hasinger; L. Strüder
SIMBOL-X is a hard X-ray mission, operating in the ~ 0.5-70 keV range, which is proposed by a consortium of European laboratories in response to the 2004 call for ideas of CNES for a scientific mission to be flown on a formation flying demonstrator. Relying on two spacecrafts in a formation flying configuration, SIMBOL-X uses for the first time a ~ 30 m focal length X-ray mirror to focus X-rays with energy above 10 keV, resulting in a two orders of magnitude improvement in angular resolution and sensitivity in the hard X-ray range with respect to non focusing techniques. The SIMBOL-X revolutionary instrumental capabilities will allow to elucidate outstanding questions in high energy astrophysics, related in particular to the physics of accretion onto compact objects, to the acceleration of particles to the highest energies, and to the nature of the Cosmic X-Ray background. The mission, which has gone through a thorough assessment study performed by CNES, is expected to start a competitive phase A in autumn 2005, leading to a flight decision at the end of 2006, for a launch in 2012. The mission science objectives, the current status of the instrumentation and mission design, as well as potential trade-offs are presented in this paper.
Astronomical Telescopes and Instrumentation | 2000
B. M. Swinyard; Peter A. R. Ade; Matthew Joseph Griffin; Kjetil Dohlen; J.-P. Baluteau; D. Pouliquen; Diddier Ferand; Pascal Dargent; Guy Michel; J. Martignac; L. Rodriguez; Donald E. Jennings; Martin E. Caldwell; Anthony G. Richards; Peter A. Hamilton; David A. Naylor
The SPIRE instrument for the FIRST mission will consist of a three band imaging submillimeter photometer and a two band imaging Fourier Transform Spectrometer (FTS) optimized for the 200 - 400 micrometers range, and with extended coverage out to 670 micrometers . The FTS will be used for follow-up spectroscopic studies of objects detected in photometric surveys by SPIRE and other facilities, and to perform medium resolving power (R approximately 500 at 250 micrometers ) imaging spectroscopy on galactic and nearby extra-galactic sources.
Astronomical Telescopes and Instrumentation | 2003
Patrick Agnese; C. Cigna; Jean-Louis Pornin; R. Accomo; Claude Bonnin; N. Colombel; M. Delcourt; Eric Doumayrou; Jean Lepennec; J. Martignac; V. Revéret; L. Rodriguez; L. Vigroux
Since 1997, CEA/DSM/DAPNIA/ Service d?Astrophysique in Saclay and CEA/DTA/LETI in Grenoble are developing filled Bolometer arrays sensitive in far infrared and submillimeter. These arrays are based on an all Silicon technology development, and are optimized for imaging in high photon background conditions. A 32 × 64 and a 16 × 32 pixels arrays are under development for the far infrared photometer in the PACS instrument, which is part of the Herschel payload. We present details of the design of these arrays. We describe the performance measurements obtained so far, and give some prospects for future application
Proceedings of SPIE | 2006
N. Billot; Patrick Agnese; Jean-Louis Augueres; Alain Beguin; André Bouère; Olivier Boulade; Christophe Cara; Eric Doumayrou; L. Duband; B. Horeau; Isabelle le Mer; Jean Lepennec; J. Martignac; K. Okumura; V. Reveret; Marc Sauvage; François Simoens; L. Vigroux
The development program of the flight model imaging camera for the PACS instrument on-board the Herschel spacecraft is nearing completion. This camera has two channels covering the 60 to 210 microns wavelength range. The focal plane of the short wavelength channel is made of a mosaic of 2×4 3-sides buttable bolometer arrays (16×16 pixels each) for a total of 2048 pixels, while the long wavelength channel has a mosaic of 2 of the same bolometer arrays for a total of 512 pixels. The 10 arrays have been fabricated, individually tested and integrated in the photometer. They represent the first filled arrays of fully collectively built bolometers with a cold multiplexed readout, allowing for a properly sampled coverage of the full instrument field of view. The camera has been fully characterized and the ground calibration campaign will take place after its delivery to the PACS consortium in mid 2006. The bolometers, working at a temperature of 300 mK, have a NEP close to the BLIP limit and an optical bandwidth of 4 to 5 Hz that will permit the mapping of large sky areas. This paper briefly presents the concept and technology of the detectors as well as the cryocooler and the warm electronics. Then we focus on the performances of the integrated focal planes (responsivity, NEP, low frequency noise, bandwidth).
Proceedings of SPIE | 2004
François Simoens; Patrick Agnese; Alain Beguin; Jacques Carcey; Jean-Charles Cigna; Jean-Louis Pornin; Patrice Rey; Aurélie Vandeneynde; L. Rodriguez; Olivier Boulade; Jean Lepennec; J. Martignac; Eric Doumayrou; V. Revéret; L. Vigroux
Since 1997, CEA/SAP and CEA/LETI/SLIR have been developing monolithic Si bolometer arrays sensitive in the far infrared and submillimiter range for space observations. Two focal planes, 32x64 and 16x32 pixel arrays, are designed and manufactured for the PACS (Photodetector Array Camera and Spectrometer) instrument of the Herschel observatory, to be launched in 2007. The two arrays cover respectively the 60-130 μm and 130-210 μm ranges. The goal of these large bolometer arrays is to achieve observations in a Background limited NEP around 10-16 W.Hz-1/2. The detector physics and manufacture techniques of the different stages of these arrays are first presented. Then we describe the read-out and multiplexing cold electronics (300mK) that make possible several functional modes (temporal and fixed pattern noise reduction,...). The latest experimental measurements carried out with the complete detector system at the nominal temperature are presented and performances are discussed.
Proceedings of SPIE | 2006
B. Dirks; P. Ferrando; Ulrich G. Briel; O. Gevin; E. Kendziorra; Philippe Laurent; O. Limousin; F. Lugiez; J. Martignac; M. Authier; C. Chapron; Peter Lechner; Giovanni Pareschi; Yvon Rio; J.P. Roques; P. Salin; L. Strüder
The Simbol-X mission, currently undergoing a joint CNES-ASI phase A, is essentially a classical X-ray telescope having an exceptional large focal length obtained by formation flying technics. One satellite houses the Wolter I optics to focus, for the first time in space, X-rays above ~10 keV, onto the focal plane in the second satellite. This leads to improved angular resolution and sensitivity which are two orders of magnitude better than those obtained so far with non-focusing techniques. Tailored to the 12 arcmin field of view and ~15 arcsec angular resolution of the optics, the ~8x8 cm2 detection area of the spectro-imager has ~ 500x500 μm2 pixels, and covers the full energy range of Simbol-X, from ~0.5 to ~80 keV, with a good energy resolution at both low and high energy. Its design leads to a very low residual background in order to reach the required sensitivity. The focal plane ensemble is made of two superposed spectro-imaging detectors: a DEPFET-SDD active pixel sensor on top of an array of pixelated Cd(Zn)Te crystals, surrounded by an appropriate combination of active and passive shielding. Besides the overall concept and structure of the focal plane including the anti-coincidence and shielding, this paper also emphasizes the promising results obtained with the active pixel sensors and the Cd(Zn)Te crystals combined with their custom IDeF-X ASICs.
Proceedings of SPIE | 2014
Alex Short; D Barry; Michel Berthe; N Boudin; Olivier Boulade; R. Cole; Mark Cropper; Ludovic Duvet; James Endicott; L. M. Gaspar Venancio; Jason Gow; P. Guttridge; David J. Hall; Andrew D. Holland; Holger Israel; Ralf Kohley; R. J. Laureijs; J. Lorenzo Alvarez; J. Martignac; J Maskell; Richard Massey; Neil J. Murray; S. Niemi; Peter J. Pool; Sabrina Pottinger; Thibaut Prod'homme; Giuseppe Racca; Jean-Christophe Salvignol; W Suske; Magdalena B. Szafraniec
The focal plane array of the Euclid VIS instrument comprises 36 large area, back-illuminated, red-enhanced CCD detectors (designated CCD 273). These CCDs were specified by the Euclid VIS instrument team in close collaboration with ESA and e2v technologies. Prototypes were fabricated and tested through an ESA pre-development activity and the contract to qualify and manufacture flight CCDs is now underway. This paper describes the CCD requirements, the design (and design drivers) for the CCD and package, the current status of the CCD production programme and a summary of key performance measurements.