Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Meers is active.

Publication


Featured researches published by J. Meers.


Nature | 2006

Retroviral invasion of the koala genome

Rachael E. Tarlinton; J. Meers; Paul R. Young

Endogenous retroviruses are a common ancestral feature of mammalian genomes with most having been inactivated over time through mutation and deletion. A group of more intact endogenous retroviruses are considered to have entered the genomes of some species more recently, through infection by exogenous viruses, but this event has never been directly proved. We have previously reported koala retrovirus (KoRV) to be a functional virus that is associated with neoplasia. Here we show that KoRV also shows features of a recently inserted endogenous retrovirus that is vertically transmitted. The finding that some isolated koala populations have not yet incorporated KoRV into their genomes, combined with its high level of activity and variability in individual koalas, suggests that KoRV is a virus in transition between an exogenous and endogenous element. This ongoing dynamic interaction with a wild species provides an exciting opportunity to study the process and consequences of retroviral endogenization in action, and is an attractive model for studying the evolutionary event in which a retrovirus invades a mammalian genome.


Cellular and Molecular Life Sciences | 2008

Biology and evolution of the endogenous koala retrovirus.

Rachael E. Tarlinton; J. Meers; Paul R. Young

Although endogenous retroviruses are ubiquitous features of all mammalian genomes, the process of initial germ line invasion and subsequent inactivation from a pathogenic element has not yet been observed in a wild species. Koala retrovirus (KoRV) provides a unique opportunity to study this process of endogenisation in action as it still appears to be spreading through the koala population. Ongoing expression of the endogenous sequence and consequent high levels of viraemia have been linked to neoplasia and immunosuppression in koalas. This apparently recent invader of the koala genome shares a remarkably close sequence relationship with the pathogenic exogenous Gibbon ape leukaemia virus (GALV), and comparative analyses of KoRV and GALVare helping to shed light on how retroviruses in general adapt to a relatively benign or at least less pathogenic existence within a new host genome. (Part of a multi-author review).Abstract.Although endogenous retroviruses are ubiquitous features of all mammalian genomes, the process of initial germ line invasion and subsequent inactivation from a pathogenic element has not yet been observed in a wild species. Koala retrovirus (KoRV) provides a unique opportunity to study this process of endogenisation in action as it still appears to be spreading through the koala population. Ongoing expression of the endogenous sequence and consequent high levels of viraemia have been linked to neoplasia and immunosuppression in koalas. This apparently recent invader of the koala genome shares a remarkably close sequence relationship with the pathogenic exogenous Gibbon ape leukaemia virus (GALV), and comparative analyses of KoRV and GALVare helping to shed light on how retroviruses in general adapt to a relatively benign or at least less pathogenic existence within a new host genome. (Part of a Multi-author Review)


Archives of Virology | 2002

Avian paramyxoviruses and influenza viruses isolated from mallard ducks (Anas platyrhynchos) in New Zealand

W. L. Stanislawek; Colin R. Wilks; J. Meers; Gw Horner; Dj Alexander; R. J. Manvell; J. Kattenbelt; Allan R. Gould

Summary.A comprehensive study using virological and serological approaches was carried out to determine the status of live healthy mallard ducks (Anas platyrhynchos) in New Zealand for infections with avian paramyxoviruses (APMV) and influenza viruses (AIV). Thirty-three viruses isolated from 321 tracheal and cloacal swabs were characterized as: 6 AIV (two H5N2 and four H4N6), 10 APMV-1 and 17 APMV-4. Of 335 sera samples tested for AIV antibodies, 109 (32.5%) sera were positive by nucleoprotein-blocking ELISA (NP-B-ELISA). Serum samples (315) were examined for antibody to APMV-1, -2, -3, -4, -6, -7, -8, -9 by the haemagglutination inhibition test. The largest number of reactions, with titres up to ≥1/64, was to APMV-1 (93.1%), followed by APMV-6 (85.1%), APMV-8 (56%), APMV-4 (51.7%), APMV-7 (47%), APMV-9 (15.9%), APMV-2 (13.3%) and APMV-3 (6.0%). All of the H5N2 isolates of AIV and the APMV-1 isolates from this and earlier New Zealand studies had low pathogenicity indices assessed by the Intravenous Pathogenicity Index (IVPI) with the result 0.00 and Intracerebral Pathogenicity Index (ICPI) with results 0.00–0.16. Partial genomic and antigenic analyses were also consistent with the isolates being non-pathogenic. Phylogenetic analysis of the 10 APMV-1 isolates showed 9 to be most similar to the reference APMV-1 strain D26/76 originally isolated in Japan and also to the Que/66 strain, which was isolated in Australia. The other isolate was very similar to a virus (MC 110/77) obtained from a shelduck in France.


Australian Veterinary Journal | 2012

Prevalence of koala retrovirus in geographically diverse populations in Australia

Greg Simmons; Paul R. Young; Jon Hanger; Kiersten Jones; Daniel Clarke; Jeff J. McKee; J. Meers

OBJECTIVE To determine the prevalence of koala retrovirus (KoRV) in selected koala populations and to estimate proviral copy number in a subset of koalas. METHODS Blood or tissue samples from 708 koalas in Queensland, New South Wales, Victoria and South Australia were tested for KoRV pol provirus gene using standard polymerase chain reaction (PCR), nested PCR and real-time PCR (qPCR). RESULTS Prevalence of KoRV provirus-positive koalas was 100% in four regions of Queensland and New South Wales, 72.2% in mainland Victoria, 26.6% on four Victorian islands and 14.8% on Kangaroo Island, South Australia. Estimated proviral copy number per cell in four groups of koalas from Queensland and Victoria showed marked variation, ranging from a mean of 165 copies per cell in the Queensland group to 1.29 × 10(-4) copies per cell in one group of Victorian koalas. CONCLUSIONS The higher prevalence of KoRV-positive koalas in the north of Australia and high proviral loads in Queensland koalas may indicate KoRV entered and became endogenous in the north and is spreading southwards. It is also possible there are genetic differences between koalas in northern and southern Australia that affect susceptibility to KoRV infection or endogenisation, or that environmental factors affecting transmission in northern states are absent or uncommon in southern regions. Although further studies are required, the finding of proviral copy numbers orders of magnitude lower than what would be expected for the presence of a single copy in every cell for many Victorian animals suggests that KoRV is not endogenous in these animals and likely reflects ongoing exogenous infection.


New Zealand Veterinary Journal | 2002

Equine respiratory viruses in foals in New Zealand

Magdalena Dunowska; Colin R. Wilks; M. J. Studdert; J. Meers

Abstract AIMS: To identify the respiratory viruses that are present among foals in New Zealand and to establish the age at which foals first become infected with these viruses. METHODS: Foals were recruited to the study in October/November 1995 at the age of 1 month (Group A) or in March/April 1996 at the age of 4–6 months (Groups B and C). Nasal swabs and blood samples were collected at monthly intervals. Nasal swabs and peripheral blood leucocytes (PBL) harvested from heparinised blood samples were used for virus isolation; serum harvested from whole-blood samples was used for serological testing for the presence of antibodies against equine herpesvirus (EHV)-1 or -4, equine rhinitis-A virus (ERAV), equine rhinitis-B virus (ERBV), equine adenovirus 1 (EAdV-1), equine arteritis virus (EAV), reovirus 3 and parainfluenza virus type 3 (PIV3). Twelve foals were sampled until December 1996; the remaining 19 foals were lost from the study at various times prior to this date. RESULTS: The only viruses isolated were EHV-2 and EHV-5. EHV-2 was isolated from 155/157 PBL samples collected during the period of study and from 40/172 nasal swabs collected from 18 foals. All isolations from nasal swabs, except one, were made over a period of 2–4 months from January to April (Group A), March to April (Group B) or May to July (Group C). EHV-5 was isolated from either PBL, nasal swabs, or both, from 15 foals on 32 occasions. All foals were positive for antibodies to EHV-1 or EHV-4, as tested by serum neutralisation (SN), on at least one sampling occasion and all but one were positive for EHV-1 antibodies measured by enzyme-linked immunosorbent assay (ELISA) on at least one sampling occasion. Recent EHV-1 infection was evident at least once during the period of study in 18/23 (78%) foals for which at least two samples were collected. SN antibodies to ERBV were evident in 19/23 (83%) foals on at least one sampling occasion and 15/23 foals showed evidence of seroconversion to ERBV. Antibodies to ERAV were only detected in serum samples collected from foals in Group A and probably represented maternally-derived antibodies. Haemagglutination inhibition (HI) antibody titres ≥1:10 to EAdV-1were evident in 21/23 (91%) foals on at least one sampling occasion and 16/23 foals showed serological evidence of recent EAdV-1 infection. None of the 67 serum samples tested were positive for antibodies to EAV, reovirus 3 or PIV3. There was no clear association between infection with any of the viruses isolated or tested for and the presence of overt clinical signs of respiratory disease. CONCLUSIONS: There was serological and/or virological evidence that EHV-1, EHV-2, EHV-5, EAdV-1 and ERBV infections were present among foals in New Zealand. EHV-2 infection was first detected in foals as young as 3 months of age. The isolation of EHV-2 from nasal swabs preceded serological evidence of infection with other respiratory viruses, suggesting that EHV-2 may predispose foals to other viral infections.


Preventive Veterinary Medicine | 2009

Farm- and flock-level risk factors associated with Highly Pathogenic Avian Influenza outbreaks on small holder duck and chicken farms in the Mekong Delta of Viet Nam.

Kate A. Henning; J. Henning; J. M. Morton; Ngo Thanh Long; Nguyen Truc Ha; J. Meers

After 11 consecutive months of control, the Mekong Delta in Viet Nam experienced a wave of Highly Pathogenic Avian Influenza (HPAI) H5N1 outbreaks on small holder poultry farms from December 2006 to January 2007. We conducted a retrospective matched case-control study to investigate farm- and flock-level risk factors for outbreak occurrence during this period. Twenty-two case farms were selected from those where clinical signs consistent with HPAI H5N1 had been present and HPAI H5N1 had been confirmed with a positive real-time PCR test from samples obtained from affected birds. For every case farm enrolled, two control farms were selected matched on time of outbreak occurrence, farm location and species. Veterinarians conducted interviews with farmers, to collect information on household demographics, farm characteristics, husbandry practices, trading practices, poultry health, vaccination and biosecurity. Exact stratified logistic regression models were used to assess putative risk factors associated with a flock having or not having a HPAI outbreak. Nested analyses were also performed, restricted to subsets of farms using scavenging, confinement or supplementary feeding practices. Risk of an outbreak of HPAI H5N1 was increased in flocks that had received no vaccination (odds ratio (OR)=20.2; 95% confidence interval (CI): 1.0, +infinity) or only one vaccination (OR=85.2; 95% CI: 6.5, +infinity) of flocks compared to two vaccinations, and in flocks on farms that had family and friends visiting (OR=8.2; 95% CI: 1.0, +infinity) and geese present (OR=11.5; 95% CI: 1.1, +infinity). The subset analysis using only flocks that scavenged showed that sharing of scavenging areas with flocks from other farms was associated with increased risk of an outbreak (OR=10.9; 95% CI: 1.4, 492.9). We conclude that none or only one vaccination, visitors to farms, the presence of geese on farms and sharing of scavenging areas with ducks from other farms increase the risk of HPAI H5N1 outbreaks in poultry flocks in Viet Nam.


Archives of Virology | 1993

Extensive sequence variation of feline immunodeficiency virus env genes in isolates from naturally infected cats

Wayne K. Greene; J. Meers; G.M. del Fierro; Patrick R. Carnegie; W. F. Robinson

SummaryIn an investigation of the evolution of feline immunodeficiency virus (FIV) in vivo, sequential isolates from a persistently infected cat were examined by direct sequencing following amplification of selected subgenomic regions by polymerase chain reaction (PCR). Three isolates, T 90, T 91, and T 92, obtained over a three-year period revealed no changes to regions known to be conserved withingag andpol genes. Additionally, no change occurred withingag andpol in an isolate recovered from a second cat which was experimentally infected with T 90. Changes were detected within an N-terminal region of the envelope glycoprotein gp 120 (env). These consisted of point mutations, some of which would result in amino acid substitutions and the predicted amino acid changes tended to cluster within variable domains. Inoculation of T 90 into a second cat resulted in a different pattern of mutations than that observed for the three isolates from the first cat. In all cases, virus isolates derived from the same cat were much more highly related to each other (extent ofenv variation was 0.5–1.5%) than to isolates from other cats (10–12%env variation). The rate of change of FIV was estimated to be 3.4×10−3 nucleotide substitutions per site per year for theenv gene and less than 10−4 nucleotide substitutions per site per year for thegag andpol genes, values concordant with that found for human immunodeficiency virus 1. Both nucleotide and amino acid changes in the gp 120 region were found to be directional, suggesting that selective pressures influence FIV envelope gene sequences.


Virus Research | 2002

Molecular confirmation of an adenovirus in brushtail possums (Trichosurus vulpecula).

Darelle Thomson; J. Meers; Balázs Harrach

Abstract Partial genome characterisation of a non-cultivable marsupial adenovirus is described. Adenovirus-like particles were found by electron microscopy (EM) in the intestinal contents of brushtail possums (Trichosurus vulpecula) in New Zealand. Using degenerate PCR primers complementary to the most conserved genome regions of adenoviruses, the complete nucleotide sequence of the penton base gene, and partial nucleotide sequences of the DNA polymerase, hexon, and pVII genes were obtained. Phylogenetic analysis of the penton base gene strongly suggested that the brushtail possum adenovirus (candidate PoAdV-1) belongs to the recently proposed genus Atadenovirus. Sequence analysis of the PCR products amplified from the intestinal contents of brushtail possums originating from different geographical regions of New Zealand identified a single genotype. This is the first report of molecular confirmation of an adenovirus in a marsupial.


New Zealand Veterinary Journal | 2002

Viruses associated with outbreaks of equine respiratory disease in New Zealand.

Magdalena Dunowska; Colin R. Wilks; M. J. Studdert; J. Meers

Abstract AIM: To identify viruses associated with respiratory disease in young horses in New Zealand. METHODS: Nasal swabs and blood samples were collected from 45 foals or horses from five separate outbreaks of respiratory disease that occurred in New Zealand in 1996, and from 37 yearlings at the time of the annual yearling sales in January that same year. Virus isolation from nasal swabs and peripheral blood leukocytes (PBL) was undertaken and serum samples were tested for antibodies against equine herpesviruses (EHV-1, EHV-2, EHV-4 and EHV-5), equine rhinitis-A virus (ERAV), equine rhinitis-B virus (ERBV), equine adenovirus 1 (EAdV-1), equine arteritis virus (EAV), reovirus 3 and parainfluenza virus type 3 (PIV3). RESULTS: Viruses were isolated from 24/94 (26%) nasal swab samples and from 77/80 (96%) PBL samples collected from both healthy horses and horses showing clinical signs of respiratory disease. All isolates were identified as EHV-2, EHV-4, EHV-5 or untyped EHV. Of the horses and foals tested, 59/82 (72%) were positive for EHV-1 and/or EHV-4 serum neutralising (SN) antibody on at least one sampling occasion, 52/82 (63%) for EHV-1-specific antibody tested by enzyme-linked immunosorbent assay (ELISA), 10/80 (13%) for ERAV SN antibody, 60/80 (75%) for ERBV SN antibody, and 42/80 (53%) for haemagglutination inhibition (HI) antibody to EAdV-1. None of the 64 serum samples tested were positive for antibodies to EAV, reovirus 3 or PIV3. Evidence of infection with all viruses tested was detected in both healthy horses and in horses showing clinical signs of respiratory disease. Recent EHV-2 infection was associated with the development of signs of respiratory disease among yearlings [relative risk (RR)=2.67, 95% CI=1.59-4.47, p=0.017]. CONCLUSIONS: Of the equine respiratory viruses detected in horses in New Zealand during this study, EHV-2 was most likely to be associated with respiratory disease. However, factors other than viral infection are probably important in the development of clinical signs of disease.


PLOS ONE | 2011

Evidence of Endemic Hendra Virus Infection in Flying-Foxes (Pteropus conspicillatus)—Implications for Disease Risk Management

Andrew C. Breed; Martin F. Breed; J. Meers; Hume E. Field

This study investigated the seroepidemiology of Hendra virus in a spectacled flying-fox (Pteropus conspicillatus) population in northern Australia, near the location of an equine and associated human Hendra virus infection in late 2004. The pattern of infection in the population was investigated using a serial cross-sectional serological study over a 25-month period, with blood sampled from 521 individuals over six sampling sessions. Antibody titres to the virus were determined by virus neutralisation test. In contrast to the expected episodic infection pattern, we observed that seroprevalence gradually increased over the two years suggesting infection was endemic in the population over the study period. Our results suggested age, pregnancy and lactation were significant risk factors for a detectable neutralizing antibody response. Antibody titres were significantly higher in females than males, with the highest titres occurring in pregnant animals. Temporal variation in antibody titres suggests that herd immunity to the virus may wax and wane on a seasonal basis. These findings support an endemic infection pattern of henipaviruses in bat populations suggesting their infection dynamics may differ significantly from the acute, self limiting episodic pattern observed with related viruses (e.g. measles virus, phocine distemper virus, rinderpest virus) hence requiring a much smaller critical host population size to sustain the virus. These findings help inform predictive modelling of henipavirus infection in bat populations, and indicate that the life cycle of the reservoir species should be taken into account when developing risk management strategies for henipaviruses.

Collaboration


Dive into the J. Meers's collaboration.

Top Co-Authors

Avatar

J. Henning

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul R. Young

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

P. J. Blackall

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

C. Turni

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

T. S. Barnes

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

C. R. Parke

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Hendra Wibawa

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Palmieri

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge