Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Meinecke is active.

Publication


Featured researches published by J. Meinecke.


Nature Physics | 2015

Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows

C. M. Huntington; F. Fiuza; J. S. Ross; Alex Zylstra; R. P. Drake; D. H. Froula; G. Gregori; N. L. Kugland; C. C. Kuranz; M. C. Levy; C. K. Li; J. Meinecke; T. Morita; R. D. Petrasso; C. Plechaty; B. A. Remington; D. D. Ryutov; Youichi Sakawa; Anatoly Spitkovsky; Hideaki Takabe; H.-S. Park

Astrophysical processes are often driven by collisionless plasma shock waves. The Weibel instability, a possible mechanism for developing such shocks, has now been generated in a laboratory set-up with laser-generated plasmas.


Physics of Plasmas | 2012

Characterizing counter-streaming interpenetrating plasmas relevant to astrophysical collisionless shocks

J. S. Ross; S. H. Glenzer; Peter A. Amendt; R. L. Berger; L. Divol; N. L. Kugland; O. L. Landen; C. Plechaty; B. A. Remington; D. D. Ryutov; W. Rozmus; D. H. Froula; G. Fiksel; C. Sorce; Y. Kuramitsu; T. Morita; Y. Sakawa; H. Takabe; R. P. Drake; M.J. Grosskopf; C. C. Kuranz; G. Gregori; J. Meinecke; C. D. Murphy; M. Koenig; A. Pelka; A. Ravasio; T. Vinci; Edison P. Liang; R. Presura

A series of Omega experiments have produced and characterized high velocity counter-streaming plasma flows relevant for the creation of collisionless shocks. Single and double CH2 foils have been irradiated with a laser intensity of ∼ 1016 W/cm2. The laser ablated plasma was characterized 4 mm from the foil surface using Thomson scattering. A peak plasma flow velocity of 2000 km/s, an electron temperature of ∼ 110 eV, an ion temperature of ∼ 30 eV, and a density of ∼ 1018 cm−3 were measured in the single foil configuration. Significant increases in electron and ion temperatures were seen in the double foil geometry. The measured single foil plasma conditions were used to calculate the ion skin depth, c/ωpi∼0.16 mm, the interaction length, lint, of ∼ 8 mm, and the Coulomb mean free path, λmfp∼27mm. With c/ωpi≪lint≪λmfp, we are in a regime where collisionless shock formation is possible.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas

J. Meinecke; P. Tzeferacos; A. R. Bell; R. Bingham; Robert B. Clarke; Eugene M. Churazov; R. Crowston; Hugo Doyle; R. Paul Drake; R. Heathcote; M. Koenig; Y. Kuramitsu; C. C. Kuranz; Dongwook Lee; Michael MacDonald; C. D. Murphy; M. Notley; Hye-Sook Park; A. Pelka; Alessandra Ravasio; Brian Reville; Youichi Sakawa; W.C. Wan; N. Woolsey; Roman Yurchak; Francesco Miniati; A. A. Schekochihin; D. Q. Lamb; G. Gregori

Significance Magnetic fields exist throughout the universe. Their energy density is comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter in the universe. The origin and the amplification of these magnetic fields to their observed strengths are far from being understood. The standard model for the origin of these galactic and intergalactic magnetic fields is through the amplification of seed fields via turbulent processes to the level consistent with current observations. For this process to be effective, the amplification needs to reach a strongly nonlinear phase. Experimental evidence of the initial nonlinear amplification of magnetic fields is presented in this paper. The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.


Physics of Plasmas | 2015

Collisionless shock experiments with lasers and observation of Weibel instabilities

H.-S. Park; C. M. Huntington; F. Fiuza; R. P. Drake; D. H. Froula; G. Gregori; M. Koenig; N. L. Kugland; C. C. Kuranz; D. Q. Lamb; M. C. Levy; C. K. Li; J. Meinecke; T. Morita; R. D. Petrasso; B. B. Pollock; B. A. Remington; H. G. Rinderknecht; M. J. Rosenberg; J. S. Ross; D. D. Ryutov; Youichi Sakawa; Anatoly Spitkovsky; Hideaki Takabe; D. P. Turnbull; P. Tzeferacos; S. V. Weber; Alex Zylstra

Astrophysical collisionless shocks are common in the universe, occurring in supernova remnants, gamma ray bursts, and protostellar jets. They appear in colliding plasma flows when the mean free path for ion-ion collisions is much larger than the system size. It is believed that such shocks could be mediated via the electromagnetic Weibel instability in astrophysical environments without pre-existing magnetic fields. Here, we present laboratory experiments using high-power lasers and investigate the dynamics of high-Mach-number collisionless shock formation in two interpenetrating plasma streams. Our recent proton-probe experiments on Omega show the characteristic filamentary structures of the Weibel instability that are electromagnetic in nature with an inferred magnetization level as high as ∼1% [C. M. Huntington et al., “Observation of magnetic field generation via the weibel instability in interpenetrating plasma flows,” Nat. Phys. 11, 173–176 (2015)]. These results imply that electromagnetic instabilities are significant in the interaction of astrophysical conditions.


Physics of Plasmas | 2013

Visualizing electromagnetic fields in laser-produced counter-streaming plasma experiments for collisionless shock laboratory astrophysics

N. L. Kugland; J. S. Ross; P.-Y. Chang; R. P. Drake; G. Fiksel; D. H. Froula; S. H. Glenzer; G. Gregori; M.J. Grosskopf; C. M. Huntington; M. Koenig; Y. Kuramitsu; C. C. Kuranz; M. C. Levy; Edison P. Liang; D. Martinez; J. Meinecke; Francesco Miniati; T. Morita; A. Pelka; C. Plechaty; R. Presura; A. Ravasio; B. A. Remington; Brian Reville; D. D. Ryutov; Youichi Sakawa; Anatoly Spitkovsky; Hideaki Takabe; H.-S. Park

Collisionless shocks are often observed in fast-moving astrophysical plasmas, formed by non-classical viscosity that is believed to originate from collective electromagnetic fields driven by kinetic plasma instabilities. However, the development of small-scale plasma processes into large-scale structures, such as a collisionless shock, is not well understood. It is also unknown to what extent collisionless shocks contain macroscopic fields with a long coherence length. For these reasons, it is valuable to explore collisionless shock formation, including the growth and self-organization of fields, in laboratory plasmas. The experimental results presented here show at a glance with proton imaging how macroscopic fields can emerge from a system of supersonic counter-streaming plasmas produced at the OMEGA EP laser. Interpretation of these results, plans for additional measurements, and the difficulty of achieving truly collisionless conditions are discussed. Future experiments at the National Ignition Facility are expected to create fully formed collisionless shocks in plasmas with no pre-imposed magnetic field.


Physics of Plasmas | 2017

Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo

P. Tzeferacos; A. Rigby; A. F. A. Bott; A. R. Bell; R. Bingham; A. Casner; Fausto Cattaneo; E. Churazov; J. Emig; Norbert Flocke; F. Fiuza; Cary Forest; J. Foster; Carlo Alberto Graziani; J. Katz; M. Koenig; C. K. Li; J. Meinecke; R. D. Petrasso; H.-S. Park; B. A. Remington; J. S. Ross; Dongsu Ryu; D. D. Ryutov; Klaus Weide; T. G. White; Brian Reville; Francesco Miniati; A. A. Schekochihin; D. H. Froula

The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.


8th International Conference on Inertial Fusion Sciences and Applications, IFSA 2013 | 2016

Laboratory astrophysical collisionless shock experiments on Omega and NIF

Hye-Sook Park; J. S. Ross; C. M. Huntington; F. Fiuza; D. D. Ryutov; D. T. Casey; R. P. Drake; G. Fiksel; D. H. Froula; G. Gregori; N. L. Kugland; C. C. Kuranz; M. C. Levy; C. K. Li; J. Meinecke; T. Morita; R. D. Petrasso; C. Plechaty; B. A. Remington; Youichi Sakawa; Anatoly Spitkovsky; Hideaki Takabe; Alex Zylstra

We are performing scaled astrophysics experiments on Omega and on NIF. Laser driven counter-streaming interpenetrating supersonic plasma flows can be studied to understand astrophysical electromagnetic plasma phenomena in a controlled laboratory setting. In our Omega experiments, the counter-streaming flow plasma state is measured using Thomson scattering diagnostics, demonstrating the plasma flows are indeed super-sonic and in the collisionless regime. We observe a surprising additional electron and ion heating from ion drag force in the double flow experiments that are attributed to the ion drag force and electrostatic instabilities. [1] A proton probe is used to image the electric and magnetic fields. We observe unexpected large, stable and reproducible electromagnetic field structures that arise in the counter-streaming flows [2]. The Biermann battery magnetic field generated near the target plane, advected along the flows, and recompressed near the midplane explains the cause of such self-organizing field structures [3]. A D3He implosion proton probe image showed very clear filamentary structures; three-dimensional Particle-In-Cell simulations and simulated proton radiography images indicate that these filamentary structures are generated by Weibel instabilities and that the magnetization level (ratio of magnetic energy over kinetic energy in the system) is ~0.01 [4]. These findings have very high astrophysical relevance and significant implications. We expect to observe true collisionless shock formation when we use >100 kJ laser energy on NIF.


8th International Conference on Inertial Fusion Sciences and Applications (IFSA 2013) | 2016

Proton imaging of an electrostatic field structure formed in laser-produced counter-streaming plasmas

T. Morita; N. L. Kugland; W.C. Wan; R. Crowston; R. P. Drake; F. Fiuza; G. Gregori; C. M. Huntington; Taishi Ishikawa; M. Koenig; C. C. Kuranz; Matthew C. Levy; D. Martinez; J. Meinecke; Francesco Miniati; C. D. Murphy; A. Pelka; Christopher Plechaty; R. Presura; N. Quirós; B. A. Remington; Brian Reville; J. S. Ross; D. D. Ryutov; Youichi Sakawa; L. Steele; Hideaki Takabe; Yuta Yamaura; N. Woolsey; Hye-Sook Park

We report the measurements of electrostatic field structures associated with an electrostatic shock formed in laser-produced counter-streaming plasmas with proton imaging. The thickness of the electrostatic structure is estimated from proton images with different proton kinetic energies from 4.7 MeV to 10.7 MeV. The width of the transition region is characterized by electron scale length in the laser-produced plasma, suggesting that the field structure is formed due to a collisionless electrostatic shock.


Review of Scientific Instruments | 2012

Simultaneous imaging electron- and ion-feature Thomson scattering measurements of radiatively heated Xe

B. B. Pollock; J. Meinecke; S. Kuschel; J. S. Ross; Jessica Shaw; C. Stoafer; L. Divol; G. R. Tynan; S. H. Glenzer

Uniform density and temperature Xe plasmas have been produced over >4 mm scale-lengths using x-rays generated in a cylindrical Pb cavity. The cavity is 750 μm in depth and diameter, and is heated by a 300 J, 2 ns square, 1054 nm laser pulse focused to a spot size of 200 μm at the cavity entrance. The plasma is characterized by simultaneous imaging Thomson scattering measurements from both the electron and ion scattering features. The electron feature measurement determines the spatial electron density and temperature profile, and using these parameters as constraints in the ion feature analysis allows an accurate determination of the charge state of the Xe ions. The Thomson scattering probe beam is 40 J, 200 ps, and 527 nm, and is focused to a 100 μm spot size at the entrance of the Pb cavity. Each system has a spatial resolution of 25 μm, a temporal resolution of 200 ps (as determined by the probe duration), and a spectral resolution of 2 nm for the electron feature system and 0.025 nm for the ion feature system. The experiment is performed in a Xe filled target chamber at a neutral pressure of 3-10 Torr, and the x-rays produced in the Pb ionize and heat the Xe to a charge state of 20±4 at up to 200 eV electron temperatures.


Journal of Instrumentation | 2017

Magneto-optic probe measurements in low density-supersonic jets

M. Oliver; T. G. White; P. Maybe; M. Kühn-Kauffeldt; L. Döhl; R. Bingham; Robert B. Clarke; P. Graham; R. Heathcote; M. Koenig; Y. Kuramitsu; D. Q. Lamb; J. Meinecke; Th. Michel; Francesco Miniati; M. Notley; Brian Reville; Subir Sarkar; Y. Sakawa; A. A. Schekochihin; P. Tzeferacos; N. Woolsey; H.-S. Park; G. Gregori

A magneto-optic probe was used to make time-resolved measurements of the magnetic field in both a single supersonic jet and in a collision between two supersonic turbulent jets, with an electron density ⇡ 1018 cm3 and electron temperature ⇡ 4 eV. The magneto-optic data indicated the magnetic field reaches B ⇡ 200 G. The measured values are compared against those obtained with a magnetic induction probe. Good agreement of the time-dependent magnetic field measured using the two techniques is found.

Collaboration


Dive into the J. Meinecke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Reville

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. A. Remington

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. S. Ross

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. D. Ryutov

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. H. Froula

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge