Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Michael Edwardson is active.

Publication


Featured researches published by J. Michael Edwardson.


Trends in Pharmacological Sciences | 1997

Endocytosis and recycling of G protein-coupled receptors

Jennifer A. Koenig; J. Michael Edwardson

Agonist stimulation of G protein-coupled receptors causes a dramatic reorganization of their intracellular distribution. Activation of receptors triggers receptor endocytosis and, since receptors recycle back to the surface continuously, a new steady state is reached where a significant proportion of receptors is located internally. Although this movement of receptors is remarkable, its role has been enigmatic. Recent developments have provided insight into the compartments through which the receptors move, the nature of the signals that trigger receptor translocation, and the significance of receptor cycling for cell function. In this article, Jennifer Koenig and Michael Edwardson review recent progress in this field and place receptor cycling into a mathematical framework that reveals the extent and rate of intracellular receptor movement.


Journal of Biological Chemistry | 2005

Atomic force microscopy imaging demonstrates that P2X2 receptors are trimers but that P2X6 receptor subunits do not oligomerize

Nelson P. Barrera; Susan J. Ormond; Robert M. Henderson; Ruth D. Murrell-Lagnado; J. Michael Edwardson

P2X receptors are cation-selective channels activated by extracellular ATP. The architecture of these receptors is still not completely clear. Here we have addressed this issue by both chemical cross-linking and direct imaging of individual receptors by atomic force microscopy (AFM). Cross-linking of the P2X2 receptor produced higher order adducts, consistent with the presence of trimers. The mean molecular volume of the receptor determined by AFM (409 nm3) also points to a trimeric structure. P2X2 receptors bearing His6 epitope tags were incubated with anti-His6 antibodies, and the resultant complexes were imaged by AFM. For receptors with two bound antibodies, the mean angle between the antibodies was 123°, again indicating that the receptor is a trimer. In contrast, cross-linking of the P2X6 receptor did not produce higher order adducts, and the mean molecular volume of the receptor was 145 nm3. We conclude that P2X2 receptors are trimers, whereas the P2X6 receptor subunits do not form stable oligomers.


Biophysical Journal | 2003

Real-Time Analysis of the Effects of Cholesterol on Lipid Raft Behavior Using Atomic Force Microscopy

Jared Lawrence; David E. Saslowsky; J. Michael Edwardson; Robert M. Henderson

Cholesterol plays a crucial role in cell membranes, and has been implicated in the assembly and maintenance of sphingolipid-rich rafts. We have examined the cholesterol-dependence of model rafts (sphingomyelin-rich domains) in supported lipid monolayers and bilayers using atomic force microscopy. Sphingomyelin-rich domains were observed in lipid monolayers in the absence and presence of cholesterol, except at high cholesterol concentrations, when separate domains were suppressed. The effect of manipulating cholesterol levels on the behavior of these sphingomyelin-rich domains in bilayers was observed in real time. Depletion of cholesterol resulted in dissolution of the model lipid rafts, whereas cholesterol addition resulted in an increased size of the sphingomyelin-rich domains and eventually the formation of a single raftlike lipid phase. Cholesterol colocalization with sphingomyelin-rich domains was confirmed using the sterol binding agent filipin.


Traffic | 2006

Compound Exocytosis: Mechanisms and Functional Significance

James A. Pickett; J. Michael Edwardson

Compound exocytosis occurs in many cell types. It represents a specialized form of secretion in which vesicles undergo fusion with each other as well as with the plasma membrane. In most cases, compound exocytosis occurs sequentially, with deeper‐lying vesicles fusing, after a delay, with vesicles that have already fused with the plasma membrane. However, in some cells, vesicles can also apparently fuse with each other intracellularly before any interaction with the plasma membrane. In this review, we discuss the general features of compound exocytosis, and the features that are specific to particular cells. We consider mechanisms that might impose the requirement for vesicles to fuse with the plasma membrane before they become able to fuse with each other, the possibility that there are biochemical differences between vesicle–plasma membrane fusion events and subsequent secondary homotypic vesicle fusion events, and the role that cytoskeletal elements might play in the stabilization of fused vesicles, in order to permit secondary fusion events. Finally, we discuss the likely physiological significance of compound exocytosis in the various cell types in which it exists.


Journal of Cell Biology | 2003

Identification of synaptotagmin effectors via acute inhibition of secretion from cracked PC12 cells

Ward C. Tucker; J. Michael Edwardson; Jihong Bai; Hyun Jung Kim; Thomas F. J. Martin; Edwin R. Chapman

T he synaptotagmins (syts) are a family of membrane proteins proposed to regulate membrane traffic in neuronal and nonneuronal cells. In neurons, the Ca2+-sensing ability of syt I is critical for fusion of docked synaptic vesicles with the plasma membrane in response to stimulation. Several putative Ca2+–syt effectors have been identified, but in most cases the functional significance of these interactions remains unknown. Here, we have used recombinant C2 domains derived from the cytoplasmic domains of syts I–XI to interfere with endogenous syt–effector interactions during Ca2+-triggered exocytosis from cracked PC12 cells. Inhibition was closely correlated with syntaxin–SNAP-25 and phosphatidylinositol 4,5-bisphosphate (PIP2)–binding activity. Moreover, we measured the expression levels of endogenous syts in PC12 cells; the major isoforms are I and IX, with trace levels of VII. As expected, if syts I and IX function as Ca2+ sensors, fragments from these isoforms blocked secretion. These data suggest that syts trigger fusion via their Ca2+-regulated interactions with t-SNAREs and PIP2, target molecules known to play critical roles in exocytosis.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Fast-scan atomic force microscopy reveals that the type III restriction enzyme EcoP15I is capable of DNA translocation and looping

Neal Crampton; Masatoshi Yokokawa; David T. F. Dryden; J. Michael Edwardson; Desirazu N. Rao; Kunio Takeyasu; Shige H. Yoshimura; Robert M. Henderson

Many DNA-modifying enzymes act in a manner that requires communication between two noncontiguous DNA sites. These sites can be brought into contact either by a diffusion-mediated chance interaction between enzymes bound at the two sites, or by active translocation of the intervening DNA by a site-bound enzyme. EcoP15I, a type III restriction enzyme, needs to interact with two recognition sites separated by up to 3,500 bp before it can cleave DNA. Here, we have studied the behavior of EcoP15I, using a novel fast-scan atomic force microscope, which uses a miniaturized cantilever and scan stage to reduce the mechanical response time of the cantilever and to prevent the onset of resonant motion at high scan speeds. With this instrument, we were able to achieve scan rates of up to 10 frames per s under fluid. The improved time resolution allowed us to image EcoP15I in real time at scan rates of 1–3 frames per s. EcoP15I translocated DNA in an ATP-dependent manner, at a rate of 79 ± 33 bp/s. The accumulation of supercoiling, as a consequence of movement of EcoP15I along the DNA, could also be observed. EcoP15I bound to its recognition site was also seen to make nonspecific contacts with other DNA sites, thus forming DNA loops and reducing the distance between the two recognition sites. On the basis of our results, we conclude that EcoP15I uses two distinct mechanisms to communicate between two recognition sites: diffusive DNA loop formation and ATPase-driven translocation of the intervening DNA contour.


Journal of Biological Chemistry | 2009

Analysis of assembly and trafficking of native P2X4 and P2X7 receptor complexes in rodent immune cells

Miyyada Boumechache; J. Michael Edwardson; Dariusz C. Górecki; Ruth D. Murrell-Lagnado

P2X4 and P2X7 are the predominant P2X receptor subtypes expressed in immune cells. Having previously shown a structural and functional interaction between the two recombinant receptors, our aims here were to identify the preferred assembly pathway of the endogenous receptors in macrophage-like cells and to investigate the trafficking of these receptors between the plasma membrane and intracellular sites. We exploited the difference in size between the two subunits, and we used a combination of cross-linkers and blue native-PAGE analysis to investigate the subunit composition of complexes present in primary cultures of rat microglia and macrophages from wild type and P2X7–/– mice. Our results indicate that the preferred assembly pathway for both receptors is the formation of homotrimers. Homotrimers of P2X7 were able to co-immunoprecipitate with P2X4, suggesting that an interaction occurs between rather than within receptor complexes. In both macrophages and microglia, P2X7 receptors were predominantly at the cell surface, whereas P2X4 receptors were predominantly intracellular. There were clear cell type-dependent differences in the extent to which P2X4 receptors trafficked to and from the surface; trafficking was much more dynamic in microglia than in the macrophages, and further activation of cultured microglia with relatively short (3-h) incubations with lipopolysaccharide caused an ∼4-fold increase in the fraction of receptors at the surface with only a 1.2-fold increase in total expression. The redistribution of intracellular receptors is thus an efficient means of enhancing the functional expression of P2X4 at the plasma membrane of microglia.


Cell | 1997

The secretory granule protein syncollin binds to syntaxin in a Ca2(+)-sensitive manner.

J. Michael Edwardson; Seong An; Reinhard Jahn

The membrane proteins synaptobrevin, syntaxin, and SNAP-25 form the core of a ubiquitous fusion machine that interacts with the soluble proteins NSF and alpha-SNAP. During regulated exocytosis, membrane fusion is usually strictly controlled by Ca2+ ions. However, the mechanism by which Ca2+ regulates exocytosis is still unclear. Here we show that the membranes of exocrine secretory granules contain an 18-kDa protein, syncollin, that binds to syntaxin at low Ca2+ concentrations and dissociates at concentrations known to stimulate exocytosis. Syncollin has a single hydrophobic domain at its N-terminus and shows no significant homology with any known protein. Recombinant syncollin inhibits fusion in vitro between zymogen granules and pancreatic plasma membranes, and its potency falls as Ca2+ concentration rises. We suggest that syncollin acts as a Ca2(+)-sensitive regulator of exocytosis in exocrine tissues.


Nature Structural & Molecular Biology | 1999

Direct observation of DNA translocation and cleavage by the EcoKI endonuclease using atomic force microscopy

Darren J. Ellis; David T. F. Dryden; Torunn Berge; J. Michael Edwardson; Robert M. Henderson

Direct observation of DNA translocation and cleavage by the Eco KI endonuclease using atomic force microscopy


Journal of Biological Chemistry | 2009

The transient receptor potential channels TRPP2 and TRPC1 form a heterotetramer with a 2:2 stoichiometry and an alternating subunit arrangement.

Toshiro Kobori; Graham D. Smith; Richard Sandford; J. Michael Edwardson

There is functional evidence that polycystin-2 (TRPP2) interacts with other members of the transient receptor potential family, including TRPC1 and TRPV4. Here we have used atomic force microscopy to study the structure of the TRPP2 homomer and the interaction between TRPP2 and TRPC1. The molecular volumes of both Myc-tagged TRPP2 and V5-tagged TRPC1 isolated from singly transfected tsA 201 cells indicated that they assembled as homotetramers. The molecular volume of the protein isolated from cells expressing both TRPP2 and TRPC1 was intermediate between the volumes of the two homomers, suggesting that a heteromer was being formed. The distribution of angles between pairs of anti-Myc antibodies bound to TRPP2 particles had a large peak close to 90° and a smaller peak close to 180°, consistent with the assembly of TRPP2 as a homotetramer. In contrast, the corresponding angle distributions for decoration of the TRPP2-TRPC1 heteromer by either anti-Myc or anti-V5 antibodies had predominant peaks close to 180°. This decoration pattern indicates a TRPP2:TRPC1 subunit stoichiometry of 2:2 and an alternating subunit arrangement.

Collaboration


Dive into the J. Michael Edwardson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edwin R. Chapman

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Nelson P. Barrera

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pia Jeggle

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge