Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J Molloy is active.

Publication


Featured researches published by J Molloy.


Medical Physics | 1990

Nonlinear magnetic stereotaxis : three-dimensional, in vivo remote magnetic manipulation of a small object in canine brain

Grady Ms; Matthew A. Howard; J Molloy; Rogers C. Ritter; E.G. Quate; George T. Gillies

In a series of in vivo experiments on five adult canines, a small cylindrical permanent magnet (approximately 5-mm diameter x 5 mm long) was magnetically moved under fluoroscopic guidance from an occipital-lobe burr hole to a predetermined destination within the brain and then removed. On three of the animals, dorsal and temporal skull markers were used to establish a coordinate system against which the motions of the seed were referenced. These procedures were sufficiently accurate to permit the guided motion of the seed along nonlinear paths within the brain, including traversal of the midline through the corpus callosum. For removal, the seed could be steered either to a frontal lobe location for extraction through an auxiliary burr hole, or back to the same burr hole through which it had been inserted. This article discusses the way in which stereotactic motions were obtained, the performance limits of the instrumentation and the precision of motion achieved.


Physics in Medicine and Biology | 2007

A motion phantom study on helical tomotherapy: the dosimetric impacts of delivery technique and motion

Brian Kanagaki; Paul W. Read; J Molloy; James M. Larner; Ke Sheng

Helical tomotherapy (HT) can potentially be used for lung cancer treatment including stereotactic radiosurgery because of its advanced image guidance and its ability to deliver highly conformal dose distributions. However, previous theoretical and simulation studies reported that the effect of respiratory motion on statically planned tomotherapy treatments may cause substantial differences between the calculated and actual delivered radiation isodose distribution, particularly when the treatment is hypofractionated. In order to determine the dosimetric effects of motion upon actual HT treatment delivery, phantom film dosimetry measurements were performed under static and moving conditions using a clinical HT treatment unit. The motion phantom system was constructed using a programmable motor, a base, a moving platform and a life size lung heterogeneity phantom with wood inserts representing lung tissue with a 3.0 cm diameter spherical tumour density equivalent insert. In order to determine the effects of different motion and tomotherapy delivery parameters, treatment plans were created using jaw sizes of 1.04 cm and 2.47 cm, with incremental gantry rotation periods between the minimum allowed (10 s) and the maximum allowed (60 s). The couch speed varied from 0.009 cm s(-1) to 0.049 cm s(-1), and delivered to a phantom under static and dynamic conditions with peak-to-peak motion amplitudes of 1.2 cm and 2 cm and periods of 3 and 5 s to simulate human respiratory motion of lung tumours. A cylindrical clinical target volume (CTV) was contoured to tightly enclose the tumour insert. 2.0 Gy was prescribed to 95% of the CTV. Two-dimensional dose was measured by a Kodak EDR2 film. Dynamic phantom doses were then quantitatively compared to static phantom doses in terms of axial dose profiles, cumulative dose volume histograms (DVH), percentage of CTV receiving the prescription dose and the minimum dose received by 95% of the CTV. The larger motion amplitude resulted in more under-dosing at the ends of the CTV in the axis of motion, and this effect was greater for the smaller jaw size plans. Due to the size of the penumbra, the 2.47 cm jaw plans provide adequate coverage for smaller amplitudes of motion, +/-0.6 cm in our experiment, without adding any additional margin in the axis of motion to the treatment volume. The periodic heterogeneous patterns described by previous studies were not observed from the single fraction of the phantom measurement. Besides the jaw sizes, CTV dose coverage is not significantly dependent on machine and phantom motion periods. The lack of adverse synchronization patterns from both results validate that HT is a safe technique for treating moving target and hypofractionation.


Annals of Biomedical Engineering | 1990

Experimental determination of the force required for insertion of a thermoseed into deep brain tissues.

J Molloy; Rogers C. Ritter; Grady Ms; M. A. HowardIII; E.G. Quate; George T. Gillies

Our laboratories are developing a new technique for delivering localized hyperthermia to deep-seated brain tumors. In this technique, a spherical thermoseed is stereotactically navigated through the brain and tumor tissues via the noncontact application of an external magnetic force. The force required to produce motion of a 3 mm diameter sphere through in vitro brain tissues was measured to be 0.07 ± 0.03 N. This result was obtained from a series of experiments performed on whole brain specimens extracted from adult canines. Data were also taken with a 3 mm × 3 mm cylinder and a 5 mm sphere. An experimental procedure simulating physiological conditions was developed prior to testing. Evaluations of systematic effects included determinations of the calibration uncertainties, tests of the dependence of the measured force on temperature, and studies of the effects of method of storage of the tissue specimens. The results obtained are compared with (and confirmed by) two different series of experiments performed in vivo on adult canines and with another series of experiments using brain phantom gelatin.


Neurosurgery | 1990

Magnetic Stereotaxis: A Technique to Deliver Stereotactic Hyperthermia

Sean M. Grady; Matthew A. Howard; William C. Broaddus; J Molloy; Rogers C. Ritter; Elizabeth G. Quate; George T. Gillies

Advances in imaging techniques and computer software over the past decade now define brain abnormalities such as tumors in precise, three-dimensional images. We have taken advantage of these technological improvements in designing a system capable of performing magnetic manipulation of an object in a nonlinear trajectory and able to deliver hyperthermia to highly specific targets within the brain. This device relies on external magnets to pull a small metal pellet (thermoceptor) through the brain, and on biplane fluoroscopy to localize the thermoceptor with respect to previously obtained magnetic resonance images. A radiofrequency tuned circuit serves as the hyperthermia applicator and selectively heats the thermoceptor. This paper describes experiments conducted in a series of dogs showing that all three components of the system (magnetic drive, stereotactic real time imaging, and hyperthermia) can be achieved. Integration of the system was accomplished in one animal. These encouraging results need further detailed substantiation in each of the components, yet demonstrate the feasibility of such a device.


Physics in Medicine and Biology | 2007

Evaluation of the reproducibility of lung motion probability distribution function (PDF) using dynamic MRI

Jing Cai; Paul W. Read; Talissa A. Altes; J Molloy; James R. Brookeman; Ke Sheng

Treatment planning based on probability distribution function (PDF) of patient geometries has been shown a potential off-line strategy to incorporate organ motion, but the application of such approach highly depends upon the reproducibility of the PDF. In this paper, we investigated the dependences of the PDF reproducibility on the imaging acquisition parameters, specifically the scan time and the frame rate. Three healthy subjects underwent a continuous 5 min magnetic resonance (MR) scan in the sagittal plane with a frame rate of approximately 10 f s-1, and the experiments were repeated with an interval of 2 to 3 weeks. A total of nine pulmonary vessels from different lung regions (upper, middle and lower) were tracked and the dependences of their displacement PDF reproducibility were evaluated as a function of scan time and frame rate. As results, the PDF reproducibility error decreased with prolonged scans and appeared to approach equilibrium state in subjects 2 and 3 within the 5 min scan. The PDF accuracy increased in the power function with the increase of frame rate; however, the PDF reproducibility showed less sensitivity to frame rate presumably due to the randomness of breathing which dominates the effects. As the key component of the PDF-based treatment planning, the reproducibility of the PDF affects the dosimetric accuracy substantially. This study provides a reference for acquiring MR-based PDF of structures in the lung.


Medical Physics | 2011

Quality assurance of U.S.-guided external beam radiotherapy for prostate cancer: Report of AAPM Task Group 154

J Molloy; Gordon H. Chan; Alexander Markovic; Shawn McNeeley; Doug Pfeiffer; Bill J. Salter; Wolfgang A. Tomé

Task Group 154 (TG154) of the American Association of Physicists in Medicine (AAPM) was created to produce a guidance document for clinical medical physicists describing recommended quality assurance (QA) procedures for ultrasound (U.S.)-guided external beam radiotherapy localization. This report describes the relevant literature, state of the art, and briefly summarizes U.S. imaging physics. Simulation, treatment planning and treatment delivery considerations are presented in order to improve consistency and accuracy. User training is emphasized in the report and recommendations regarding peer review are included. A set of thorough, yet practical, QA procedures, frequencies, and tolerances are recommended. These encompass recommendations to ensure both spatial accuracy and image quality.


Medical Physics | 2006

A computer simulated phantom study of tomotherapy dose optimization based on probability density functions (PDF) and potential errors caused by low reproducibility of PDF

Ke Sheng; Jing Cai; James R. Brookeman; J Molloy; John M Christopher; Paul W. Read

Lung tumor motion trajectories measured by four-dimensional CT or dynamic MRI can be converted to a probability density function (PDF), which describes the probability of the tumor at a certain position, for PDF based treatment planning. Using this method in simulated sequential tomotherapy, we study the dose reduction of normal tissues and more important, the effect of PDF reproducibility on the accuracy of dosimetry. For these purposes, realistic PDFs were obtained from two dynamic MRI scans of a healthy volunteer within a 2 week interval. The first PDF was accumulated from a 300 s scan and the second PDF was calculated from variable scan times from 5 s (one breathing cycle) to 300 s. Optimized beam fluences based on the second PDF were delivered to the hypothetical gross target volume (GTV) of a lung phantom that moved following the first PDF The reproducibility between two PDFs varied from low (78%) to high (94.8%) when the second scan time increased from 5 s to 300 s. When a highly reproducible PDF was used in optimization, the dose coverage of GTV was maintained; phantom lung receiving 10%-20% prescription dose was reduced by 40%-50% and the mean phantom lung dose was reduced by 9.6%. However, optimization based on PDF with low reproducibility resulted in a 50% underdosed GTV. The dosimetric error increased nearly exponentially as the PDF error increased. Therefore, although the dose of the tumor surrounding tissue can be theoretically reduced by PDF based treatment planning, the reliability and applicability of this method highly depend on if a reproducible PDF exists and is measurable. By correlating the dosimetric error and PDF error together, a useful guideline for PDF data acquisition and patient qualification for PDF based planning can be derived.


Medical Physics | 2004

A method to compare supra-pubic ultrasound and CT images of the prostate: Technique and early clinical results

J Molloy; Shiv Srivastava; Bernard F. Schneider

We describe a unique method that allows the comparison of spatially registered ultrasound (SRUS) images and computed tomography-derived contours (CTDCs) that were acquired with a minimal time lapse. As such, we have a tool that will provide validation of the spatial accuracy of the US system and that will allow comparison of anatomical boundaries derived via the two different imaging modalities. We describe the method by which the commercial US system is mechanically registered to a CT simulator and a unique data processing procedure. This data processing procedure circumvents the standard data acquisition and manual contouring sequence, thus reducing the time lapse from CT to US image acquisition to 10 minutes on average. Verification using a phantom demonstrated the method to be spatially accurate to within +/- 1 mm in the anterior-posterior (AP) and lateral directions and +/- 3 mm in the inferior-superior (IS) direction. Early clinical results gathered on 8 patients demonstrated alignment between the US and the CTDCs to be 0 mm in the AP and lateral directions and 2 mm in the IS direction, on average. The technique was used to compare the appearance of the prostate using US and CT imaging. The lateral dimension of the prostate indicated by the CTDCs was larger than that indicated by US imaging in all cases and on average by 0.9 cm. The height of the prostate in the AP direction was larger on average by 0.3 cm using CTDCs than US, and was larger by 5 mm or more in 3 out of 7 cases. The role of uncertainties in the determination of the CTDCs is examined as a possible cause and implications for treatment planning are described.


computer-based medical systems | 2004

Generalized speckle reducing anisotropic diffusion for ultrasound imagery

Yongjian Yu; J Molloy; Scott T. Acton

We first derive rigorously a partial differential equation (PDE) for speckle reduction from minimizing a cost functional of the instantaneous coefficient of variation. Then, we show that the piecewise exponential function is the solution of the derived PDE. Next, we express the derived PDE using log-compressed ultrasound data, followed by a numerical implementation scheme. Finally, we demonstrate the performance of the proposed PDE using examples and compare the results with those obtained from the speckle reducing anisotropic diffusion (SRAD) algorithm.


Medical Physics | 2014

Independent dosimetric assessment of the model EP917 episcleral brachytherapy plaque

Prakash Aryal; J Molloy; Mark J. Rivard

PURPOSE To investigate the influence of slot design on dose distributions and dose-volume histograms (DVHs) for the model EP917 plaque for episcleral brachytherapy. METHODS Dimensions and orientations of the slots were measured for three model EP917 plaques and compared to data in the Plaque Simulator (PS) treatment planning software (version 5.7.6). These independently determined coordinates were incorporated into the MCNP Monte Carlo simulation environment to obtain dose from the plaques in a water environment and in a clinical environment with ocular structures. A tumor volume was simulated as 5 mm in apical height and 11 mm in basal diameter. Variations in plaque mass density and composition; slot length, width, and depth; seed positioning; and Ag-marker rod positioning were simulated to examine their influence on plaque central axis (CAX) and planar dose distributions, and DVHs. RESULTS Seed shifts in a single slot toward the eye and shifts of the(125)I-coated Ag rod within the capsule had the greatest impact on CAX dose distribution. A shift of 0.0994 mm toward the eye increased dose by 14%, 9%, 4.3%, and 2.7% at 1, 2, 5, and 10 mm, respectively, from the inner sclera. When examining the fully-modeled plaque in the ocular geometry, the largest dose variations were caused by shifting the Ag rods toward the sclera and shifting the seeds away from the globe when the slots were made 0.51 mm deeper, causing +34.3% and -69.4% dose changes to the outer sclera, respectively. At points along the CAX, dose from the full plaque geometry using the measured slot design was 2.4%±1.1% higher than the manufacturer-provided slot design and 2.2%±2.3% higher than the homogeneous calculation of PS treatment planning results. The ratio of D10 values for the measured slot design to the D10 values for the manufacturer-provided slot design was higher by 9%, 10%, and 19% for the tumor, inner sclera, and outer sclera, respectively. In comparison to the measured slot design, a theoretical plaque having narrower and deeper slots delivered 30%, 37%, and 62% lower D10 doses to the tumor, inner sclera, and outer sclera, respectively. CONCLUSIONS While the measured positions of the slots on the model EP917 plaque were in close agreement (<0.7 mm) with the PS values, small differences in the slot shape caused substantial differences in dose distributions and DVH metrics. Increasing slot depth by 0.1 mm decreased outer scleral dose by 20%, yet shifting the Ag rods in the seeds toward the globe by 0.1 mm increased outer scleral dose by 35%. The clinical medical physicist is advised to measure these types of plaques upon acceptance testing before clinical use to inspect slot shape and position for comparison with data used for treatment planning purposes.

Collaboration


Dive into the J Molloy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ke Sheng

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew A. Howard

University of Iowa Hospitals and Clinics

View shared research outputs
Top Co-Authors

Avatar

W Luo

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

E.G. Quate

University of Virginia

View shared research outputs
Researchain Logo
Decentralizing Knowledge