Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. P. Barfield is active.

Publication


Featured researches published by J. P. Barfield.


Molecular Human Reproduction | 2017

A pre-in vitro maturation medium containing cumulus oocyte complex ligand-receptor signaling molecules maintains meiotic arrest, supports the cumulus oocyte complex and improves oocyte developmental competence

Nicolas W. Santiquet; Alison F. Greene; John Becker; J. P. Barfield; W.B. Schoolcraft; Rebecca L. Krisher

STUDY QUESTION Can a pre-in vitro maturation (pre-IVM) medium containing signaling molecules rather than chemical/pharmaceutical agents, sustain meiotic arrest and improve developmental competence of in vitro matured oocytes in CF1 outbred mice? SUMMARY ANSWER A short 2 h period of pre-IVM prevents spontaneous meiotic resumption, improves mitochondria activity in subsequently matured oocytes, and increases developmental competence, pregnancy rate and implantation of resulting embryos. WHAT IS KNOWN ALREADY Spontaneous resumption of meiosis in vitro is detrimental for oocyte developmental competence. Pre-IVM systems that prevent spontaneous meiotic resumption with chemical/pharmaceutical agents are a promising approach to improving IVM oocyte competence; however, the success of these methods has proven to be inconsistent. STUDY DESIGN, SIZE, DURATION This study consisted of a series of experiments using cumulus oocyte complexes (COC) derived from outbred mice following ovarian stimulation. The study was designed to examine if a novel, ligand/receptor-based pre-IVM treatment could sustain meiotic arrest in vitro and improve oocyte developmental competence, compared to control IVM. Two pre-IVM durations (2 h and 24 h) were evaluated, and the effect of the mitochondrial stimulator PQQ during 24 h pre-IVM was studied. PARTICIPANTS/MATERIALS, SETTING, METHODS Murine (outbred CF1) immature COC were cultured in vitro in the presence of C-type natriuretic peptide (CNP) (30 nM), estradiol (100 nM), FSH (1 × 10-4 IU/ml) and bone morphogenic protein 15 (BMP15) (100 ng/ml) for 2 h or 24 h prior to IVM. Meiotic status during pre-IVM and IVM was analyzed using orcein staining, and functionality of gap junction communication was confirmed using the functional gap junction inhibitor carbenoxolone (CBX). Oocytes exposed to pre-IVM treatment were compared to control oocytes collected on the same day from the same females and undergoing standard IVM. Developmental competence and embryo viability was assessed by oocyte mitochondrial activity and ATP concentration, in vitro embryo development following IVF and in vitro culture, blastocyst cell number and allocation, embryo morphokinetics, and embryo transfer. Differences were determined to be significant when P < 0.05. MAIN RESULTS AND THE ROLE OF CHANCE Both a short (2 h) and long (24 h) pre-IVM period successfully prevented spontaneous resumption of meiosis. Moreover, gap junctions remained open during the pre-IVM period, as shown by the resumption of meiosis (95.9 ± 2.1%) in the presence of CBX during pre-IVM. A 2 h pre-IVM treatment improved blastocyst development after 96 h of culture per cleaved embryo compared to control (71.9 ± 7.4% versus 53.3 ± 6.2%, respectively), whereas a longer 24 h pre-IVM had no effect on development. A short 2 h period of pre-IVM increased mitochondrial activity in mature oocytes. On the contrary, mitochondrial activity was reduced in mature oocytes following 24 h of arrest and IVM. Treatment of arrested COC with pyrroloquinoline quinone (PQQ) during the 24 h pre-IVM period successfully maintained mitochondrial activity equal to control. However, PQQ was not able to improve blastocyst development compared to pre-IVM 24 h without PQQ. Moreover, ATP concentration in mature oocytes following pre-IVM and/or IVM, did not differ between treatments. A 2 h pre-IVM period prior to IVM improved pregnancy rate following transfer to recipient females. Implantation was also improved after transfer of embryos derived from oocytes arrested for either 2 h or 24 h prior to IVM, compared to control IVM derived embryos (41.9 ± 9%, 37.2 ± 9.5% and 17.2 ± 8.3%, respectively), although fetal development did not differ. LIMITATIONS, REASONS FOR CAUTION Slower meiotic resumption and enhanced mitochondrial activity likely contribute to improved developmental competence of oocytes exposed to pre-IVM for 2 h, but further experiments are required to identify specific mechanisms. Maintaining oocytes in meiotic arrest for 24 h with this approach could be a potential window to improve oocyte quality. However, an initial attempt to utilize this period of arrest to manipulate quality with PQQ, a mitochondrial stimulator, did not improve oocyte competence. WIDER IMPLICATIONS OF THE FINDINGS IVM could be an attractive clinical alternative to conventional IVF, with reduced time, cost and reliance on high doses of exogenous hormones to stimulate follicle growth, thus eliminating ovarian hyperstimulation syndrome (OHSS). Currently IVM is not widely used as it results in reduced embryo development and lower pregnancy outcomes compared to embryos produced from in vivo matured oocytes. Our approach to IVM, incorporating a ligand/receptor pre-IVM period, could improve human oocyte quality following IVM leading to routine adoption of this patient friendly technology. In addition, our methodology of pre-IVM containing signaling molecules rather than chemical/pharmaceutical agents may prove to be more consistent at improving oocyte quality than those focusing only on cAMP modulation with pharmacological agents. Finally, a reliable method of maintaining oocytes in meiotic arrest in vitro provides a novel window of opportunity in which the oocyte may be manipulated to address specific physiological deficiencies prior to meiotic resumption. LARGE SCALE DATA N/A. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Colorado Center for Reproductive Medicine (CCRM, Lone Tree, Colorado USA). We declare no conflict of interest.


Theriogenology | 2017

Cryopreservation of bison epididymal sperm: A strategy for improving post-thaw quality when collecting sperm in field conditions

Christiane Garcia Vilela; Juliana Messias Marquez; J.K. Graham; J. P. Barfield


Reproduction, Fertility and Development | 2014

136 BLASTOCOELE COLLAPSE IMPROVES POST-THAW SURVIVAL OF SLOW FROZEN AND VITRIFIED IN VITRO-PRODUCED BOVINE EMBRYOS

J. P. Barfield; G.E. Seidel


Reproduction, Fertility and Development | 2012

170 IN VITRO PRODUCTION OF BISON EMBRYOS

J. P. Barfield; G.E. Seidel


Reproduction, Fertility and Development | 2011

68 OSMOTIC RESPONSES OF EQUINE EMBRYOS WITH AND WITHOUT CAPSULES TO CRYOPROTECTANTS

J. P. Barfield; S.P. Leibo; Patrick M. McCue; G.E. Seidel


Reproduction, Fertility and Development | 2018

73 Fatty Acid Supplementation in Culture Medium with Reduced Nutrient Concentrations Improves Bovine Blastocyst Development Compared with Standard Culture Medium

R. Pasquariello; Jason R. Herrick; Y. Yuan; A. F. Ermisch; J. Becker; L. Yao; Corey D. Broeckling; W.B. Schoolcraft; J. P. Barfield; Rebecca L. Krisher


Reproduction, Fertility and Development | 2018

5 Live Offspring Produced from Reproductive Material Recovered During the Annual Cull of Bison from Yellowstone National Park

H. Benham; M. McCollum; P. Nol; B. Frey; Jack C. Rhyan; J. P. Barfield


Journal of Assisted Reproduction and Genetics | 2017

Transporting cumulus complexes using novel meiotic arresting conditions permits maintenance of oocyte developmental competence

Nicolas W. Santiquet; Jason R. Herrick; Angelica Giraldo; J. P. Barfield; W.B. Schoolcraft; Rebecca L. Krisher


Fertility and Sterility | 2017

Micro-RNA sequencing of individual human oocytes

R. Pasquariello; B. Badaoui; A.F. Ermisch; E.E. Paulson; S. McCormick; J. P. Barfield; W.B. Schoolcraft; Pablo J. Ross; Rebecca L. Krisher


Fertility and Sterility | 2016

Replacement of sodium pyruvate with ethyl pyruvate promotes zygotic cleavage and inner cell mass development during in vitro culture of embryos from females of advanced maternal age

E. Silva; J.C. Becker; Jason R. Herrick; S. Lyons; Corey D. Broeckling; J. P. Barfield; W.B. Schoolcraft; J. Swain; Rebecca L. Krisher

Collaboration


Dive into the J. P. Barfield's collaboration.

Top Co-Authors

Avatar

G.E. Seidel

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

W.B. Schoolcraft

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerrit J. Bouma

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

R. Pasquariello

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

B. Frey

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

E.E. Paulson

University of California

View shared research outputs
Top Co-Authors

Avatar

H. Benham

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

J.K. Graham

Colorado State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge