Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. P. Feist is active.

Publication


Featured researches published by J. P. Feist.


Measurement Science and Technology | 2003

Oxygen quenching of phosphorescence from thermographic phosphors

J. P. Feist; Andrew L. Heyes; S. Seefeldt

Thermographic phosphor thermometry is a technique for surface temperature measurement which may be employed in the hot sections of a gas turbine allowing temperature detection up to around 1400 °C with uncertainties better than for other remote standard techniques such as pyrometry. The phosphors have been regarded as pressure insensitive and indeed have been used to provide reference temperature data for the correction of pressure-sensitive paint data. The authors wish to employ the technique in gas turbine combustors where oxygen partial pressure varies widely due to its consumption in the combustion reaction. An experiment was therefore conducted to confirm the pressure/oxygen insensitivity of two high-temperature phosphors. However, this revealed a response to oxygen partial pressure that implies an uncertainty in temperature measurements within the primary zone of a combustor of typically 1%. There does not appear to have been any previous report of such a response in the literature and this note therefore serves as a caution to those employing the thermographic phosphor thermometry technique where oxygen partial pressure varies significantly.


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2008

Optical Nondestructive Condition Monitoring of Thermal Barrier Coatings

Andrew L. Heyes; J. P. Feist; X. Chen; Zaher Mutasim; J.R. Nicholls

This paper describes recent developments of the thermal barrier sensor concept for nondestructive evaluation (NDE) of thermal barrier coatings (TBCs) and online condition monitoring in gas turbines. Increases in turbine inlet temperature in the pursuit of higher efficiency will make it necessary to improve or upgrade current thermal protection systems in gas turbines. As these become critical to safe operation, it will also be necessary to devise techniques for online condition monitoring and NDE. The authors have proposed thermal barrier sensor coatings (TBSCs) as a possible means of achieving NDE for TBCs. TBSCs are made by doping the ceramic material (currently yttria-stabilized zirconia (YSZ)) with a rare-earth activator to provide the coating with luminescence when excited with UV light. This paper describes the physics of the thermoluminescent response of such coatings and shows how this can be used to measure temperature. Calibration data are presented along with the results of comparative thermal cycle testing of TBSCs, produced using a production standard air plasma spray system. The latter show the durability of TBSCs to be similar to that of standard YSZ TBCs and indicate that the addition of the rare-earth dopant is not detrimental to the coating. Also discussed is the manufacture of functionally structured coatings with discreet doped layers. The temperature at the bond coat interface is important with respect to the life of the coating since it influences the growth rate of the thermally grown oxide layer, which in turn destabilizes the coating system as it becomes thicker. Experimental data are presented, indicating that dual-layered TBSCs can be used to detect luminescence from, and thereby the temperature within, subsurface layers covered by as much as 500 μm of standard TBC material. A theoretical analysis of the data has allowed some preliminary calculations of the transmission properties of the overcoat to be made, and these suggest that it might be possible to observe phosphorescence and measure temperature through an overcoat layer of up to approximately 1.56 mm thickness.


Heat Transfer Engineering | 2009

Photo-Stimulated Phosphorescence for Thermal Condition Monitoring and Nondestructive Evaluation in Thermal Barrier Coatings

J. P. Feist; Andrew L. Heyes

This article describes recent developments of the thermal barrier sensor concept for nondestructive evaluation (NDE) of thermal barrier coatings (TBCs) and on-line condition monitoring in gas turbines. New and enhanced instrumentation to measure surface temperature distributions and heat flux and to monitor TBC health are regarded as a priority by the industry. The authors have proposed thermal barrier sensor coatings (TBSCs) as a possible means of achieving such measurements. TBSCs are made by doping the ceramic material (currently yttria-stabilized zirconia) with a rare earth activator to provide the coating with luminescence when excited with ultraviolet (UV) light. The article describes the physics of the thermoluminescent response of such coatings and shows how this can be used to measure temperature. Calibration data are presented from a coating produced using a production standard spray system. Also discussed is the manufacture of functionally structured coatings with discreet doped layers. The temperature at the bond coat interface is important with respect to the life of the coating since it influences the growth rate of the thermally grown oxide layer, which in turn destabilizes the coating system as it becomes thicker. Preliminary experimental data are presented that indicate that dual-layered TBSCs can be used to detect luminescence from, and thereby the temperature within, subsurface layers. A theoretical analysis of the data has allowed some preliminary calculations of the transmission properties of the overcoat to be made, and these suggest that it might be possible to observe phosphorescence and measure temperature through an overcoat layer of up to approximately 1.33 mm thickness.


Volume 3: Controls, Diagnostics and Instrumentation; Cycle Innovations; Marine | 2010

Concept for a Phosphorescent Thermal History Sensor

A. Rabhiou; J. P. Feist; A. Kempf; Stephen J. Skinner; Andrew L. Heyes

The thermal history of hot surfaces is of great practical importance, but very hard to measure. Thermal indicating paints offer one possible and practical way, but they have many disadvantages. A novel concept for the utilisation of phosphorescent coatings as thermal history sensors has been proposed by Feist et al. [1] in 2007. These phosphor coatings undergo irreversible changes when exposed to high temperatures that affect their light emission properties. A subsequent off-line analysis of the emission at room temperature can reveal the temperature history of the coating. In this paper, an investigation of the amorphous-to-crystalline change of Y2 SiO5 : Tb is reported and used to provide a proof of concept for a phosphorescent thermal history sensor. The phosphor powder was calcined at different temperatures, and characterised using photoluminescence spectroscopy. A calibration curve was generated from the measurements and is presented and discussed.Copyright


Advances in Science and Technology | 2010

Self Diagnostic EB-PVD Thermal Barrier Coatings

J.R. Nicholls; R.G. Wellman; Rémy J. L. Steenbakker; J. P. Feist

Thermal barrier coatings (TBCs) are an enabling materials technology to improve the efficiency and durability of gas turbines and thus through such efficiency improvements offer reduce fuel usage and an associated reduction in CO2 emission. This commercial drive is pushing both aero- and industrial turbines to be lifetime dependent on TBC performance – the TBC must be “prime reliant”. However, the prediction of the durability of the TBC system has proved difficult, with lifetimes varying from sample to sample and component to component. One factor controlling this is the inability to measure accurately the bondcoat/ceramic interface temperature when buried under a TBC. In operating engines this is further exacerbated by the fact that such TBC systems operate in strong temperature gradients due to the need to cool aerofoil components. This research examines the design and manufacture of self diagnostic thermal barrier coatings capable of accurately measuring the interface temperature under the TBC, whilst providing the requisite thermal protection. Data on the temperature sensing capability of various rare earth doped EB-PVD thermal barrier coatings will be reported. It will be shown that systems exist capable of measuring temperatures in excess of 1300oC. Details of the measurement method, the compositions and the thermal stability of such systems will be discussed in this paper. The ability to produce a sensing TBC capable of measuring interface temperature, surface temperature and heat flux will further be discussed permitting the design of thermal barrier protected components capable of in-situ performance monitoring.


Journal of Turbomachinery-transactions of The Asme | 2015

Off-Line Temperature Profiling Utilizing Phosphorescent Thermal History Paints and Coatings

J. P. Feist; S. Karmakar Biswas; C. C. Pilgrim; P. Y. Sollazzo; S. Berthier

ABSTRACT Temperature profiling of components in gas turbines is of increasing importance as engineers drive to increase firing temperatures and optimise component’s cooling requirements in order to increase efficiency and lower CO 2 emissions. However, on-line temperature measurements and, particularly, temperature profiling are difficult, sometimes impossible, to perform due to inaccessibility of the components. A desirable alternative would be to record the exposure temperature in such a way that it can be determined later, off-line. The commercially available Thermal Paints are toxic in nature and come with a range of technical disadvantages such as subjective readout and limited durability. This paper proposes a novel alternative measurement technique which the authors call Thermal History Paints and Thermal History Coatings. These can be particularly useful in the design process, but further could provide benefits in the maintenance area where hotspots which occurred during operation can be detected during maintenance intervals when the engine is at ambient temperature. This novel temperature profiling technique uses optical active ions in a ceramic host material. When these ions are excited by light they start to phosphoresce. The host material undergoes irreversible changes when exposed to elevated temperatures and since these changes are on the atomic level they influence the phosphorescent properties such as the life time decay of the phosphorescence. The changes in phosphorescence can be related to temperature through calibration such that in-situ analysis will return the temperature experienced by the coating. A major benefit of this technique is in the automated interpretation of the coatings. An electronic instrument is used to measure the phosphorescence signal eliminating the need for a specialist interpreter and thus increasing readout speed. This paper reviews results from temperature measurements made with a water based paint for the temperature range 100˚C to 800˚C in controlled conditions. Repeatability of the tests and errors will be discussed. Further, some measurements are carried out using an electronic hand-held interrogation device which can scan a component surface and provide a spatial resolution of below 3mm. The instrument enables mobile measurements outside of laboratory conditions. Further a robust Thermal History Coating is introduced demonstrating the capability of the coating to withstand long term exposures. The coating is based on Thermal Barrier Coating architecture with a high temperature bondcoat and deposited using an air plasma spray process to manufacture a reliable long lasting coating. Such a coating could be employed over the life of the component to provide critical temperature information at regular maintenance intervals for example indicating hot spots on engine parts.


TEMPERATURE: ITS MEASUREMENT AND CONTROL IN SCIENCE AND INDUSTRY, VOLUME 8: Proceedings of the Ninth International Temperature Symposium | 2013

Thermal history sensing with thermographic phosphors

Andrew L. Heyes; A. Rabhiou; J. P. Feist; A. Kempf

The ability to measure temperatures on high thermal loaded components in gas turbines and similar prime movers is critical during the design phase if the performance of cooling strategies is to be confirmed. Restricted access and the extreme environment mean that on-line temperature measurement is not always possible and that off-line temperature techniques employing thermal history sensors are sometimes necessary. The authors have developed a new type of sensor based on ceramic phosphors. These show bright narrow band emission that is easily detected and distinguished from the background. Crystallization, phase change and diffusion are all temperature dependent processes that affect the emission characteristics and that, with proper calibration, can be used to form a phosphor based thermal history sensor. Results from the calibration of crystallization in Y2SiO5:Tb and its application in the form of a temperature indicating paint are reviewed. A new embodiment of the phosphor thermal history sensor conce...


Journal of Turbomachinery-transactions of The Asme | 2015

On-Line Temperature Measurement Inside a Thermal Barrier Sensor Coating During Engine Operation

A. Yañez Gonzalez; C. C. Pilgrim; J. P. Feist; P. Y. Sollazzo; Frank Beyrau; Andrew L. Heyes

Existing thermal barrier coatings (TBCs) can be adapted enhancing their functionalities such that they not only protect critical components from hot gases but also can sense their own material temperature or other physical properties. The self-sensing capability is introduced by embedding optically active rare earth ions into the thermal barrier ceramic. When illuminated by light, the material starts to phosphoresce and the phosphorescence can provide in situ information on temperature, phase changes, corrosion, or erosion of the coating subject to the coating design. The integration of an on-line temperature detection system enables the full potential of TBCs to be realized due to improved accuracy in temperature measurement and early warning of degradation. This in turn will increase fuel efficiency and will reduce CO2 emissions. This paper reviews the previous implementation of such a measurement system into a Rolls-Royce jet engine using dysprosium doped yttrium-stabilized-zirconia (YSZ) as a single layer and a dual layer sensor coating material. The temperature measurements were carried out on cooled and uncooled components on a combustion chamber liner and on nozzle guide vanes (NGVs), respectively. The paper investigates the interpretation of those results looking at coating thickness effects and temperature gradients across the TBC. For the study, a specialized cyclic thermal gradient burner test rig was operated and instrumented using equivalent instrumentation to that used for the engine test. This unique rig enables the controlled heating of the coatings at different temperature regimes. A long-wavelength pyrometer was employed detecting the surface temperature of the coating in combination with the phosphorescence detector. A correction was applied to compensate for changes in emissivity using two methods. A thermocouple was used continuously measuring the substrate temperature of the sample. Typical gradients across the coating are less than 1 K/μm. As the excitation laser penetrates the coating, it generates phosphorescence from several locations throughout the coating and hence provides an integrated signal. The study successfully proved that the temperature indication from the phosphorescence coating remains between the surface and substrate temperature for all operating conditions. This demonstrates the possibility to measure inside the coating closer to the bond coat. The knowledge of the bond coat temperature is relevant to the growth of the thermally grown oxide (TGO) which is linked to the delamination of the coating and hence determines its life. Further, the data are related to a one-dimensional phosphorescence model determining the penetration depth of the laser and the emission.


40th Annual Review of Progress in Quantitative Nondestructive Evaluation: Incorporating the 10th International Conference on Barkhausen Noise and Micromagnetic Testing | 2014

Thermal History Sensors for Non-Destructive Temperature Measurements in Harsh Environments

C. C. Pilgrim; Andrew L. Heyes; J. P. Feist

The operating temperature is a critical physical parameter in many engineering applications, however, can be very challenging to measure in certain environments, particularly when access is limited or on rotating components. A new quantitative non-destructive temperature measurement technique has been proposed which relies on thermally induced permanent changes in ceramic phosphors. This technique has several distinct advantages over current methods for many different applications. The robust ceramic material stores the temperature information allowing long term thermal exposures in harsh environment to be measured at a convenient time. Additionally, rare earth dopants make the ceramic phosphorescent so that the temperature information can be interpreted by automated interrogation of the phosphorescent light. This technique has been demonstrated by application of YAG doped with dysprosium and europium as coatings through the air-plasma spray process. Either material can be used to measure temperature over a wide range, namely between 300°C and 900°C. Furthermore, results show that the material records the peak exposure temperature and prolonged exposure at lower temperatures would have no effect on the temperature measurement. This indicates that these materials could be used to measure peak operating temperatures in long-term testing.


Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Controls, Diagnostics and Instrumentation | 2012

PHOSPHOR BASED TEMPERATURE INDICATING PAINTS

Andrew L. Heyes; A. Rabhiou; J. P. Feist; A. Kempf

The ability to measure temperature in extreme environments such as the hot sections of gas turbines is critically important. Several on-line techniques exist but it is often not possible to measure in real-time the temperature of all surfaces of interest. Indeed, some surfaces are so inaccessible as to require complex, costly and intrusive instrumentation for on-line temperature measurement. Here, off-line sensors, also called thermal history sensors, can be used to record the temperatures to which they are exposed, in such a way that they can be extracted later off-line, at room temperature.Probably the best-known types of thermal history sensor are the colour changing thermal paints, that are widely used in gas turbine development. These have been valuable tools of engine developers for many years, but their use presents a number of challenges so that alternatives would be welcome.This paper reports the latest developments of a thermal history sensor based on phosphors that undergo permanent changes in their luminescence properties when exposed to high temperatures. Such thermal history sensors have several advantages over and address many of the shortcomings of existing sensors. The paper contains details of the application of a phosphor-based temperature indicating paint based on Y2SiO5:Tb suspended in a chemical binder. The binder was found to influence the optical properties of the phosphor but despite this, a viable sensor paint for temperatures in the range 400°C to 900°C was formed.A thermal history coating was installed using a thermal barrier coating architecture, applied on various components of a Royce-Rolls Viper 201 engine owned by STS and operated for a number of hours at Cranfield University. Post-operation analysis revealed a temperature distribution on the surfaces/components and enabled hotspots to be identified. Overall the results suggest that phosphor-based temperature indicating paints have the potential to surpass the capability of existing paints.© 2012 ASME

Collaboration


Dive into the J. P. Feist's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Berthier

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Seefeldt

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

A. Kempf

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

A. Rabhiou

Imperial College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge