Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. P. Martin Trusler is active.

Publication


Featured researches published by J. P. Martin Trusler.


Archive | 1996

Thermophysical Properties of Fluids: An Introduction to Their Prediction

Marc J. Assael; J. P. Martin Trusler; Thomas F Tsolakis

Part 1 Equilibrium properties: the partition function the perfect gas the intermolecular potential the virial equation corresponding states equations of state activity coefficient models phase-equilibrium calculations. Part 2 Transport properties: transport-properties surfaces calculation of transport properties. Appendices: tables of property values configurational, residual and excess properties.


Journal of Chemical Physics | 2011

Application of a renormalization-group treatment to the statistical associating fluid theory for potentials of variable range (SAFT-VR).

Esther Forte; Fèlix Llovell; Lourdes F. Vega; J. P. Martin Trusler; Amparo Galindo

An accurate prediction of phase behavior at conditions far and close to criticality cannot be accomplished by mean-field based theories that do not incorporate long-range density fluctuations. A treatment based on renormalization-group (RG) theory as developed by White and co-workers has proven to be very successful in improving the predictions of the critical region with different equations of state. The basis of the method is an iterative procedure to account for contributions to the free energy of density fluctuations of increasing wavelengths. The RG method has been combined with a number of versions of the statistical associating fluid theory (SAFT), by implementing Whites earliest ideas with the improvements of Prausnitz and co-workers. Typically, this treatment involves two adjustable parameters: a cutoff wavelength L for density fluctuations and an average gradient of the wavelet function Φ. In this work, the SAFT-VR (variable range) equation of state is extended with a similar crossover treatment which, however, follows closely the most recent improvements introduced by White. The interpretation of Whites latter developments allows us to establish a straightforward method which enables Φ to be evaluated; only the cutoff wavelength L then needs to be adjusted. The approach used here begins with an initial free energy incorporating only contributions from short-wavelength fluctuations, which are treated locally. The contribution from long-wavelength fluctuations is incorporated through an iterative procedure based on attractive interactions which incorporate the structure of the fluid following the ideas of perturbation theories and using a mapping that allows integration of the radial distribution function. Good agreement close and far from the critical region is obtained using a unique fitted parameter L that can be easily related to the range of the potential. In this way the thermodynamic properties of a square-well (SW) fluid are given by the same number of independent intermolecular model parameters as in the classical equation. Far from the critical region the approach provides the correct limiting behavior reducing to the classical equation (SAFT-VR). In the critical region the β critical exponent is calculated and is found to take values close to the universal value. In SAFT-VR the free energy of an associating chain fluid is obtained following the thermodynamic perturbation theory of Wertheim from the knowledge of the free energy and radial distribution function of a reference monomer fluid. By determining L for SW fluids of varying well width a unique equation of state is obtained for chain and associating systems without further adjustment of critical parameters. We use computer simulation data of the phase behavior of chain and associating SW fluids to test the accuracy of the new equation.


Molecular Physics | 2003

Prediction of the viscosity of dense fluid mixtures

Damian D. Royal; Velisa Vesovic; J. P. Martin Trusler; W. A. Wakeham

The Vesovic-Wakeham (VW) method of predicting the viscosity of dense fluid mixtures has been improved by implementing new mixing rules based on the rigid sphere formalism. The proposed mixing rules are based on both Lebowitzs solution of the Percus-Yevick equation and on the Carnahan-Starling equation. The predictions of the modified VW method have been compared with experimental viscosity data for a number of diverse fluid mixtures: natural gas, hexane + hheptane, hexane + octane, cyclopentane + toluene, and a ternary mixture of hydrofluorocarbons (R32 + R125 + R134a). The results indicate that the proposed improvements make possible the extension of the original VW method to liquid mixtures and to mixtures containing polar species, while retaining its original accuracy.


Journal of Chemical Physics | 2008

A kinetic theory description of the viscosity of dense fluids consisting of chain molecules

Astrid S. de Wijn; Velisa Vesovic; George Jackson; J. P. Martin Trusler

An expression for the viscosity of a dense fluid is presented that includes the effect of molecular shape. The molecules of the fluid are approximated by chains of equal-sized, tangentially jointed, rigid spheres. It is assumed that the collision dynamics in such a fluid can be approximated by instantaneous collisions between two rigid spheres belonging to different chains. The approach is thus analogous to that of Enskog for a fluid consisting of rigid spheres. The description is developed in terms of two molecular parameters, the diameter sigma of the spherical segment and the chain length (number of segments) m. It is demonstrated that an analysis of viscosity data of a particular pure fluid alone cannot be used to obtain independently effective values of both sigma and m. Nevertheless, the chain lengths of n-alkanes are determined by assuming that the diameter of each rigid sphere making up the chain can be represented by the diameter of a methane molecule. The effective chain lengths of n-alkanes are found to increase linearly with the number C of carbon atoms present. The dependence can be approximated by a simple relationship m=1+(C-1)3. The same relationship was reported within the context of a statistical associating fluid theory equation of state treatment of the fluid, indicating that both the equilibrium thermodynamic properties and viscosity yield the same value for the chain lengths of n-alkanes.


Journal of Physical Chemistry B | 2013

Molecular Dynamics Simulations of CO2 and Brine Interfacial Tension at High Temperatures and Pressures

Xuesong Li; Daniel A. Ross; J. P. Martin Trusler; Geoffrey C. Maitland; Edo S. Boek

Molecular dynamics simulations have been performed to study the interfacial tension of CO2 and brine for a range of temperatures between 303 and 393 K and pressures from 2 to 50 MPa. The ions involved in this study are Na(+), Ca(2+), and Cl(-). The results indicate that the interfacial tension decreases with increasing pressure under any temperature condition but increases linearly with the molality of the salt solution. The density profiles calculated from the MD simulation results also indicate a positive excess of CO2 and a negative excess of ions at the interface. The charge of the ions was found to have a larger influence than their size on the interfacial tension, a result that consistent with experimental findings.


Journal of Physical Chemistry B | 2014

Experimental and modeling study of the phase behavior of (methane + CO2 + water) mixtures

Saif Z. S. Al Ghafri; Esther Forte; Geoffrey C. Maitland; José J. Rodriguez-Henríquez; J. P. Martin Trusler

In this work we report phase equilibrium measurements on the system (methane + carbon dioxide + water) carried out with a high-pressure quasi-static-analytical apparatus. The measurements have been made under conditions of two-phase vapor-liquid equilibrium, three-phase vapor-liquid-liquid equilibrium (VLLE), and four-phase vapor-liquid-liquid-hydrate equilibrium. The compositions of three coexisting fluid phases have been obtained along eight isotherms at temperatures from (285.15 to 303.5) K and at pressures up to either the upper critical end point (UCEP) or up to the hydrate formation locus. Compositions of coexisting vapor and liquid phases have been obtained along three isotherms at temperatures from (323.15 to 423.15) K and pressures up to 20 MPa. The quadruple curve, along which hydrates coexist with the three fluid phases, was also measured along its entire length. The VLLE data obtained for this mixture have been compared with the predictions of the statistical associating fluid theory for potentials of variable range (SAFT-VR), implemented with the square-well potential and using parameters fitted to pure-component and binary-mixture data. Specifically, we used the SAFT-VR parameters reported by Mı́guez and co-workers [Mı́guez, J. M.; dos Ramos, M. C.; Piñeiro, M. M.; Blas, F. J. J. Phys. Chem. B 2011, 115, 9604]. The pressure along the quadruple curve was compared with the predictions of two different thermodynamic models. Furthermore, a detailed study of the ternary mixtures was carried out based on comparison with available ternary data of the type (CO2 + n-alkane + water) and available data for the constituent binary subsystems. In this way, we analyzed the observed effects on the solubility when the n-alkane component was changed or a third component was added.


Journal of Chemical Physics | 2012

Viscosity of liquid mixtures: The Vesovic-Wakeham method for chain molecules

Astrid S. de Wijn; Nicolas Riesco; George Jackson; J. P. Martin Trusler; Velisa Vesovic

New expressions for the viscosity of liquid mixtures, consisting of chain-like molecules, are derived by means of Enskog-type analysis. The molecules of the fluid are modelled as chains of equally sized, tangentially joined, and rigid spheres. It is assumed that the collision dynamics in such a fluid can be approximated by instantaneous collisions. We determine the molecular size parameters from the viscosity of each pure species and show how the different effective parameters can be evaluated by extending the Vesovic-Wakeham (VW) method. We propose and implement a number of thermodynamically consistent mixing rules, taking advantage of SAFT-type analysis, in order to develop the VW method for chain molecules. The predictions of the VW-chain model have been compared in the first instance with experimental viscosity data for octane-dodecane and methane-decane mixtures, thus, illustrating that the resulting VW-chain model is capable of accurately representing the viscosity of real liquid mixtures.


Pure and Applied Chemistry | 2012

Guidelines for reporting of phase equilibrium measurements (IUPAC Recommendations 2012)

Robert D. Chirico; Theodoor W. De Loos; Jürgen Gmehling; Anthony R. H. Goodwin; Sumnesh Gupta; William M. Haynes; Kenneth N. Marsh; V. Rives; James D. Olson; Calvin Spencer; Joan F. Brennecke; J. P. Martin Trusler

Recommendations are given for reporting in the primary scientific literature of measurements involving phase equilibrium. The focus is on documentation issues, and many of the recommendations may also be applied to the more general fields of thermodynamic and transport properties. The historical context of the work and specific plans for implementation of the recommendations are discussed.


Journal of Petroleum Science and Engineering | 2002

Phase behavior and physical properties of petroleum reservoir fluids from acoustic measurements

Stuart J. Ball; Anthony R. H. Goodwin; J. P. Martin Trusler

An ultrasonic apparatus for measurements of the speed of sound in liquids and compressed gases has been constructed. The instrument has been tested in measurements on both water and a bottom-hole live reservoir crude oil sample. The speed of sound in the oil sample was measured at three temperatures between 335 and 402 K at pressures up to 70 MPa. Measurements made along an isotherm, starting in the single-phase region and proceeding with decreasing pressure, were shown to lead to a precise determination of the bubble point of the fluid. The prospects for obtaining the fluid density from sound speed measurements are discussed. We also describe the possibility of determining the oil viscosity from measurements of the sound absorption made with the same ultrasonic cell.


Energy and Environmental Science | 2018

Carbon capture and storage (CCS): The way forward

Mai Bui; Claire S. Adjiman; André Bardow; Edward J. Anthony; Andy Boston; Solomon Brown; Paul S. Fennell; Sabine Fuss; Amparo Galindo; Leigh A. Hackett; Jason P. Hallett; Howard J. Herzog; George Jackson; Jasmin Kemper; Samuel Krevor; Geoffrey C. Maitland; Michael Matuszewski; Ian S. Metcalfe; Camille Petit; Graeme Puxty; Jeffrey A. Reimer; David Reiner; Edward S. Rubin; Stuart A. Scott; Nilay Shah; Berend Smit; J. P. Martin Trusler; Paul A. Webley; Jennifer Wilcox; Niall Mac Dowell

Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets, delivering low carbon heat and power, decarbonising industry and, more recently, its ability to facilitate the net removal of CO2 from the atmosphere. However, despite this broad consensus and its technical maturity, CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus, in this paper we review the current state-of-the-art of CO2 capture, transport, utilisation and storage from a multi-scale perspective, moving from the global to molecular scales. In light of the COP21 commitments to limit warming to less than 2 °C, we extend the remit of this study to include the key negative emissions technologies (NETs) of bioenergy with CCS (BECCS), and direct air capture (DAC). Cognisant of the non-technical barriers to deploying CCS, we reflect on recent experience from the UKs CCS commercialisation programme and consider the commercial and political barriers to the large-scale deployment of CCS. In all areas, we focus on identifying and clearly articulating the key research challenges that could usefully be addressed in the coming decade.

Collaboration


Dive into the J. P. Martin Trusler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc J. Assael

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esther Forte

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge