J. P. Santerre
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. P. Santerre.
Biomaterials | 2002
F. Jaffer; Y. Finer; J. P. Santerre
Cholesterol esterase (CE) and pseudocholinesterase (PCE) have been reported to degrade commercial and model composite resins containing bisphenylglycidyl dimethacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA) or the latter in combination with urethane modified BisGMA monomer systems. In addition, human saliva has been shown to contain esterase like activities similar to CE and PCE. Hence, it was the aim of the current study to determine to what extent human saliva could degrade two common commercial composite resins (Z250 from 3M Inc. and Spectrum TPH from L.D. Caulk) which contain the above monomer systems. Saliva samples from different volunteers were collected, processed, pooled, and freeze-dried. TEGDMA and BisGMA monomers were incubated with human saliva derived esterase activity (HSDEA) and their respective hydrolysis was monitored using high performance liquid chromatography (HPLC). Both monomers were completely hydrolyzed within 25 h by HSDEA. Photopolymerized composites were incubated with buffer or human saliva (pH 7.0 and 37 C) for 2, 8 and 16 days. The incubation solutions were analyzed using HPLC and mass spectrometry. Surface morphology characterization was carried out using scanning electron microscopy. Upon biodegradation, the Z250 composite yielded higher amounts of BisGMA and TEGDMA related products relative to the TPH composite. However, there were higher amounts of ethoxylated bis-phenol A released from the TPH material. In terms of total mass of products released, human saliva demonstrated a greater ability to degrade Z250. In summary, HSDEA has been shown to contain esterase activities that can readily catalyze the biodegradation of current commercial composite resins.
Biomaterials | 2001
Rosalind S. Labow; Erin Meek; J. P. Santerre
Polycarbonate (PCN)-based polyurethanes (PCNU) are rapidly becoming the chosen polyurethane (PU) for long-term implantation since they have shown decreased susceptibility to oxidation. However, monocyte-derived macrophages (MDM), the cell implicated in biodegradation, also contain hydrolytic activities. Hence, in this study, an activated human MDM cell system was used to assess the biostability of a PCNU, synthesized with 14C-hexane diisocyanate (HDI) and butanediol (BD), previously shown to be susceptible to hydrolysis by cholesterol esterase (CE). Monocytes, isolated from whole blood and cultured for 14 days on polystyrene (PS) to mature MDM, were gently trypsinized and seeded onto 14C-PCNU. Radiolabel release and esterase activity, as measured with p-nitrophenylbutyrate, increased for almost 2 weeks. At 1 week, the increase in radiolabel release and esterase activity were diminished by more than 50% when the protein synthesis inhibitor, cycloheximide, or the serine esterase/protease inhibitor, phenylmethylsulfonylfluoride was added to the medium. This strongly suggests that in part, it was MDM esterase activity which contributed to the PU degradation. In an effort to simulate the potential combination of oxidative and hydrolytic activities of inflammatory cells. 14C-PCNU was exposed to HOCl and then CE. Interestingly, the release of radiolabeled products by CE was significantly inhibited by the pre-treatment of PCNU with HOCl. The results of this study show that while the co-existing roles of oxidation and hydrolysis in the biodegradation of PCNUs remains to be elucidated, a clear relationship is drawn for PCNU degradation to the hydrolytic degradative activities which increase in MDM during differentiation from monocytes, and during activation in the chronic phase of the inflammatory response.
Journal of Dental Research | 2013
M. Bourbia; D. Ma; Dennis G. Cvitkovitch; J. P. Santerre; Yoav Finer
A major reason for dental resin composite restoration replacement is related to secondary caries promoted by acid production from bacteria including Streptococcus mutans (S. mutans). We hypothesized that S. mutans has esterase activities that degrade dental resin composites and adhesives. Standardized specimens of resin composite (Z250), total-etch (Scotchbond Multipurpose, SB), and self-etch (Easybond, EB) adhesives were incubated with S. mutans UA159 or uninoculated culture medium (control) for up to 30 days. Quantification of the BisGMA-derived biodegradation by-product, bishydroxy-propoxy-phenyl-propane (BisHPPP), was performed by high-performance liquid chromatography. Surface analysis of the specimens was performed by scanning electron microscopy (SEM). S. mutans was shown to have esterase activities in levels comparable with those found in human saliva. A trend of increasing BisHPPP release throughout the incubation period was observed for all materials and was more elevated in the presence of bacteria vs. control medium for EB and Z250, but not for SB (p < .05). SEM confirmed the increased degradation of all materials with S. mutans UA159 vs. control. S. mutans has esterase activities at levels that degrade resin composites and adhesives; degree of degradation was dependent on the material’s chemical formulation. This finding suggests that the resin-dentin interface could be compromised by oral bacteria that contribute to the progression of secondary caries.
Journal of Biomedical Materials Research | 1998
I. Voronov; J. P. Santerre; A. Hinek; J. W. Callahan; J. Sandhu; E. L. Boynton
In this study, an in vitro model has been developed to examine the interactions of macrophages with ultrahigh molecular-weight polyethylene (UHMWPE) and high-density polyethylene (HDPE) particles. Polyethylene particles are the major constituent of the material debris formed as a result of orthopedic implant wear. However, the study of polyethylene particle interactions with cells has been limited. UHMWPE (18-20 microns) and HDPE (4-10 microns) were suspended in soluble collagen type I and subsequently solidified on glass coverslips. The particle chemistry was characterized by Fourier transform infra-red spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). Mouse cell line macrophages (IC-21) were established on the collagen-particle substrata and maintained for up to 24 h. The response of the cells to the particles was examined by light and transmission electron microscopy (LM and TEM), as well as by scanning electron microscopy (SEM), and compared to cells on control collagen surfaces without particles. Histological analysis of the samples revealed that the macrophages surrounded larger particles (18-20 microns) and the cells appeared to be attached to the surface of the particles, and the smaller particles (4-10 microns) had been phagocytosed within 2 h. Inflammatory cytokines (TNF-alpha, IL-1 alpha, IL-1 beta, and IL-6), lysosomal enzymes (beta-galactosidase and hexosaminidase), and prostaglandin E2 were released into the medium, and IL-1 alpha, IL-1 beta, PGE2, beta-galactosidase, and hexosaminidase levels were significantly increased over collagen control values. The results demonstrate active phagochemotaxis by macrophages for wear particulates and validate this model as a means of studying the specific in vitro interactions of polyethylene with cells.
Journal of Biomaterials Science-polymer Edition | 2000
J. Y.Ho; T. Matsuura; J. P. Santerre
Polyethersulfone (PES) has been recently adopted for membrane materials in applications such as ultrafiltration and haemodialysis. As a biomaterial, the factors which affect the blood compatibility of PES membranes include surface energetics, hydrophobicity, and surface morphology. Surface fluorination of materials has been found to create surfaces with improved blood compatibility and chemical stability. One novel approach to generating fluorinated polymer surfaces has included the use of fluorinated surface modifying macromolecules (SMMs). These macromolecules have been reported to establish fluorinated functional groups at surfaces of polymeric materials without significantly affecting the physical properties of the base polymer. However, to date there has been relatively little information published on the nature of the surface structure for PES materials containing these SMMs. In this study, synthesized SMMs with varying chemical compositions were characterized and blended with PES, and fabricated into flat sheet membranes. The bulk thermal transitions of PES materials were not significantly altered by the addition of 4 wt% SMMs. Contact angle data showed that the addition of SMMs in PES created more hydrophobic surfaces, accompanied by an increase in surface heterogeneity. X-ray photoelectron spectroscopy studies confirmed the presence of elemental fluorine at the surface. Through microscopy studies, it was shown that surface modification was achieved by the migration of SMM concentrated microdomains to the air-membrane interface. The generated microdomains (approximately 1-2 μm in diameter) are dispersed within the top 8 μm of the surface. The concentration of microdomains was gradually depleted from the surface to the bulk of the membrane. A schematic of the morphology for SMMs within the PES membrane surface was proposed.
Journal of Biomedical Materials Research | 1997
Y.W. Tang; J. P. Santerre; Rosalind S. Labow; D. G. Taylor
Polyurethanes are widely used as biomaterials for medical implants because of their excellent mechanical properties and moderate biocompatibility. However, the demand for more bioresistant and biocompatible polyurethanes to meet the needs of long-term implant devices still remains an important issue. Since most biological interactions with materials occur at the interface, a significant number of studies for improving the biocompatibility of polyurethanes have concentrated on surface modification. It is well known that additives used in polymeric materials as processing aids, mold releasing agents, antioxidants, etc., migrate to the surface and change the surface properties of the material. Under certain conditions polymeric additives may also migrate toward surfaces. This study describes two fluorine-containing, surface-modifying macromolecules (SMMs) that have been evaluated for their ability to inhibit polyurethane degradation. These materials actively migrate to the upper surface of a material film when they are mixed with a base polymeric materia. Contact angle measurements for the mixture of SMM with base polyurethane indicate that the surface becomes more hydrophobic after adding the SMMs, while X-ray photoelectron spectroscopy analysis shows an enrichment of fluorine on the polymer surfaces. Differential scanning calorimetry thermograms indicate that the micro-structure, as defined by the thermal transitions of the base polymer, are not altered by the addition of SMMs. Enzyme-induced biodegradation tests exhibit a significant reduction of polyurethane degradation in the presence of these surface-resident materials. The results indicate that the SMMs have the potential to resist hydrolytic degradation mediated by lysosomal enzymes while generating a surface chemistry on the native elastomer which is similar in nature to that of a fluoropolymer, e.g., Teflon.
Journal of Dental Research | 2010
S. Kermanshahi; J. P. Santerre; Dennis G. Cvitkovitch; Y. Finer
Bis-GMA-containing resin composites and adhesives undergo biodegradation by human-saliva-derived esterases, yielding Bis-hydroxy-propoxy-phenyl-propane (Bis-HPPP). The hypothesis of this study is that the exposure of dental restorations to saliva-like esterase activities accelerates marginal bacterial microleakage. Resin composites (Scotchbond, Z250, 3M) bonded to human dentin were incubated in either buffer or dual-esterase media (pseudocholinesterase/cholesterol-esterase; PCE+CE), with activity levels simulating those of human saliva, for up to 90 days. Incubation solutions were analyzed for Bis-HPPP by high-performance liquid chromatography. Post-incubation, specimens were suspended in a chemostat-based biofilm fermentor cultivating Streptococcus mutans NG8, a primary species associated with dental caries, for 7 days. Bacterial microleakage was assessed by confocal laser scanning microscopy. Bis-HPPP production and depth and spatial volume of bacterial cell penetration within the interface increased with incubation time and were higher for 30- and 90-day PCE+CE vs. buffer-incubated groups, suggesting that biodegradation can contribute to the formation of recurrent decay.
Journal of Biomedical Materials Research | 2001
Rosalind S. Labow; Erin Meek; J. P. Santerre
Isolated cell systems of human neutrophils (PMNs) and monocyte-derived macrophages (MDMs) were used to compare the destructive potential of these cells during the acute and chronic phases of inflammation, respectively. The contrast in the damage to poly(urethane)s (PUs) was monitored by measuring radiolabel release elicited from a (14)C-polyester-urea-urethane (PEUU) during incubation with both cell types. Human PMN were seeded onto polymer-coated glass slips and both radiolabel release as well as serine protease activity [assayed with N-benzyloxycarbonyl lysine thiobenzyl ester (BLT)] were measured 18 h later. Human monocytes were cultured on polystyrene tissue culture plates for 14 days, trypsinized, and seeded onto the polymer-coated glass slips; then, radiolabel release and esterase activity [assayed with p-nitrophenylbutyrate (PNB)] were measured after 18 h. Coverslips with MDM were also incubated for an additional 2 weeks. At 18 h postincubation with the PEUU, MDM elicited 25 times more radiolabel release per 10(6) cells than PMN at 18 h and continued to increase more than sevenfold over the 18-h value during the subsequent 14-day period. The BLT activity in PMN did not increase significantly during the 18-h incubation period, whereas the PNB activity in MDM increased more than fourfold. The MDM, but not the PMN elicited radiolabel release, was inhibited by the protein synthesis inhibitor cycloheximide, as was the increase in PNB activity. The data provide evidence for a hydrolytic role for MDM and, to a lesser extent PMN, in the biodegradation of implanted materials. The full implication of the release of polymer-derived chemical agents from this hydrolytic cleavage of the implanted biomaterials, on the propagation of the inflammatory response, remains to be elucidated.
Journal of Biomaterials Science-polymer Edition | 2002
Y. W. Tang; Rosalind S. Labow; I. Revenko; J. P. Santerre
Abstract —Polycarbonate based polyurethanes were synthesized with varying hard segment content as well as hard segment chemistry based on three different diisocyanates,1,6-hexane diisocyanate (HDI), 4,4′-methylene bisphenyl diisocyanate (MDI) and 4,4-methylene biscyclohexyl diisocyanate (HMDI). The surface chemistry and morphology were characterized using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The polymers were incubated with cholesterol esterase (CE) in a phosphate buffer solution at 37°C over 10 weeks. XPS results showed that the surface chemistry changed as the size and chemistry of the hard segment varied within the materials. AFM images exhibited distinctive surface morphologies for all polymers, and this was particularly apparent with changes in the hard segment chemistry. The results showed that the surface of HDI polymers consisted of relatively stiff rod-like structures, which corresponded to the soft segment domains. Polymers with a higher HDI content exhibited a dense top layer containing a relatively higher hard segment component, covering the sub-surface matrix of rod like structures. The MDI based polyurethane had large aggregates on its top surface, which corresponded to the aggregation of harder components. The HMDI based polycarbonate-urethane presented a relatively homogeneous surface where no phase separation could be detected. The relative differences in hard and soft segment content in their surface structure was supported by XPS findings. The analysis of the biodegradation results, concluded that enzyme catalyzed biodegradation within these materials was initiated in amorphous soft segment regions located in the region of the interface between hard and soft segments. A higher hard segment content at the surface contributed significantly to an increase in biostability. The findings provided an enhanced understanding for the role of surface molecular structure in the enzyme catalyzed biodegradation of polyurethanes.
Journal of Biomedical Materials Research | 2000
E. L. Boynton; James P. Waddell; Erin Meek; Rosalind S. Labow; V. Edwards; J. P. Santerre
Osteolysis remains the most important problem in orthopedic implant failure. Wear debris from the implant contains polyethylene (PE) particulate which has been shown to activate monocyte-derived macrophages (MDM). Although the response of MDM has been shown to be influenced by the size, shape, and chemical type of PE, the effect of chemically altered PE on MDM has not been studied. In this study, human MDM were seeded onto glass coverslips coated with virgin high density (HD)PE and chemically modified HDPE (impregnated with ppm levels of CoCl(2) and oxidized by heat) mixed with type I collagen and cultured for 96 h. Light microscopic evaluation demonstrated consistent phagocytosis of the HDPE particulate that was confirmed by scanning electron and transmission electron microscopy with little evidence of cytotoxicity. Evaluation of pro-inflammatory mediator secretion by MDMs in response to the virgin and chemically modified HDPE revealed significant differences in interleukin (IL)-1, tumor necrosis factor (TNF)-alpha, and IL-6 secretion. A significant elevation of IL-1 secretion was observed after initial exposure to virgin HDPE particles compared with controls (p = 0.001). IL-1 secretion was also elevated in the low oxidized particle groups (p = 0.001), whereas the highly oxidized particles were not different than controls. Secretion of both IL-6 (p = 0.03) and TNF-alpha (p = 0.007) were significantly elevated by the low oxidized HDPE particles whereas the virgin and highly oxidized groups showed no difference. The different effects on MDM activation when HDPE surface chemistry was altered, highlight the importance of defining the particle properties when studying the role of MDM activation in in vitro systems and extrapolating these observations to the in vivo situation.