J. Patrick O’Neill
University of Vermont
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Patrick O’Neill.
Mutation Research-reviews in Mutation Research | 2000
H.A. Jinnah; Laura De Gregorio; James C. Harris; William L. Nyhan; J. Patrick O’Neill
In humans, mutations in the gene encoding the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) are associated with a spectrum of disease that ranges from hyperuricemia alone to hyperuricemia with profound neurological and behavioral dysfunction. Previous attempts to correlate different types or locations of mutations with different elements of the disease phenotype have been limited by the relatively small numbers of available cases. The current article describes the molecular genetic basis for 75 new cases of HPRT deficiency, reviews 196 previously reported cases, and summarizes four main conclusions that may be derived from the entire database of 271 mutations. First, the mutations associated with human disease appear dispersed throughout the hprt gene, with some sites appearing to represent relative mutational hot spots. Second, genotype-phenotype correlations provide no indication that specific disease features associate with specific mutation locations. Third, cases with less severe clinical manifestations typically have mutations that are predicted to permit some degree of residual enzyme function. Fourth, the nature of the mutation provides only a rough guide for predicting phenotypic severity. Though mutation analysis does not provide precise information for predicting disease severity, it continues to provide a valuable tool for genetic counseling in terms of confirmation of diagnoses, for identifying potential carriers, and for prenatal diagnosis.
The Journal of Infectious Diseases | 2005
Beth D. Kirkpatrick; Katherine Tenney; Catherine J. Larsson; J. Patrick O’Neill; Cassandra Ventrone; Matthew Bentley; Anthony Upton; Zoë Hindle; Christine Fidler; Deborah Kutzko; Regan Holdridge; Casey LaPointe; Sandra Hamlet; Steven Chatfield
BACKGROUND M01ZH09 (Salmonella enterica serovar Typhi [Ty2 aroC(-) ssaV(-)] ZH9) is a live oral-dose typhoid vaccine candidate. M01ZH09 was rationally modified with 2 independently attenuating mutations, including a novel mutation in Salmonella pathogenicity island (SPI)-2. We demonstrate that M01ZH09, in a single oral dose, is well tolerated and prompts broad immune responses, regardless of whether prevaccination with a bicarbonate buffer is given. METHODS Thirty-two healthy adult subjects were randomized and given 5x109 cfu of M01ZH09, with (presentation 1) or without (presentation 2) prevaccination with a bicarbonate buffer. Immunogenicity data included Salmonella Typhi lipopolysaccharide (LPS)-specific immunoglobulin (Ig) A antibody-secreting cells (enzyme-linked immunospot [ELISPOT] assay), IgG serologic responses to Salmonella Typhi LPS, lymphocyte proliferation, and interferon (IFN)- gamma production. RESULTS The vaccine was well tolerated; adverse events after vaccination were mild. No fever or prolonged vaccine shedding occurred. Immunogenicity data demonstrated that 88% and 93% of subjects who received presentation 1 and presentation 2, respectively, had a positive response by ELISPOT assay; 81% of subjects in both groups underwent IgG seroconversion on day 14. Both groups had similar cellular immune responses to presentation 1 and presentation 2; lymphocyte proliferation to Salmonella Typhi flagellin occurred in 63% and 67% of subjects, respectively, and 69% and 73% of subjects, respectively, had an increase in IFN- gamma production. CONCLUSION The oral typhoid vaccine M01ZH09 is well tolerated and highly immunogenic in a single oral dose, with and without prevaccination with a bicarbonate buffer. Field studies to demonstrate protective efficacy are planned.
Mutation Research | 2001
Elice M. Brooks; Richard F. Branda; Janice A. Nicklas; J. Patrick O’Neill
Mutations in the HPRT gene cause a spectrum of diseases that ranges from hyperuricemia alone to hyperuricemia with profound neurological and behavioral dysfunction. The extreme phenotype is termed Lesch-Nyhan syndrome. In 271 cases in which the germinal HPRT mutation has been characterized, 218 different mutations have been found. Of these, 34 (13%) are large- (macro-) deletions of one exon or greater and four (2%) are partial gene duplications. The deletion breakpoint junctions have been defined for only three of the 34 macro-deletions. The molecular basis of two of the four duplications has been defined. We report here the breakpoint junctions for three new deletion mutations, encompassing exons 4-8 (20033bp), exons 4 and 5 (13307bp) and exons 5 and 6 (9454bp), respectively. The deletion breakpoints were defined by a combination of long polymerase chain reaction (PCR) amplifications, and conventional PCR and DNA sequencing. All three deletions are the result of non-homologous recombinations. A fourth mutation, a duplication of exons 2 and 3, is the result of an Alu-mediated homologous recombination between identical 19bp sequences in introns 3 and 1. In toto, two of three germinal HPRT duplication mutations appear to have been caused by Alu-mediated homologous recombination, while only one of six deletion mutations appears to have resulted from this type of recombination mechanism. The other five deletion mutations resulted from non-homologous recombination. With this admittedly limited number of characterized macro-mutations, Alu-mediated unequal homologous recombinations account for at least 8% (3 of 38) of the macro-alterations and 1% (3 of 271) of the total HPRT germinal mutations.
Journal of Immunology | 2006
Janet M. Murray; J. Patrick O’Neill; Terri L. Messier; Jami Rivers; Vernon E. Walker; Brien McGonagle; Lucy Trombley; Lindsay G. Cowell; Garnett Kelsoe; Fraser McBlane; Barry A. Finette
V(D)J recombinase mediates rearrangements at immune loci and cryptic recombination signal sequences (cRSS), resulting in a variety of genomic rearrangements in normal lymphocytes and leukemic cells from children and adults. The frequency at which these rearrangements occur and their potential pathologic consequences are developmentally dependent. To gain insight into V(D)J recombinase-mediated events during human development, we investigated 265 coding junctions associated with cRSS sites at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus in peripheral T cells from 111 children during the late stages of fetal development through early adolescence. We observed a number of specific V(D)J recombinase processing features that were both age and gender dependent. In particular, TdT-mediated nucleotide insertions varied depending on age and gender, including percentage of coding junctions containing N-nucleotide inserts, predominance of GC nucleotides, and presence of inverted repeats (Pr-nucleotides) at processed coding ends. In addition, the extent of exonucleolytic processing of coding ends was inversely related to age. We also observed a coding-partner-dependent difference in exonucleolytic processing and an age-specific difference in the subtypes of V(D)J-mediated events. We investigated these age- and gender-specific differences with recombination signal information content analysis of the cRSS sites in the human HPRT locus to gain insight into the mechanisms mediating these developmentally specific V(D)J recombinase-mediated rearrangements in humans.
Brain & Development | 2014
Bee Chin Chen; Shanti Balasubramaniam; Ivan McGown; J. Patrick O’Neill; Gaik S. Chng; Wee Teik Keng; Lock Hock Ngu; John A. Duley
BACKGROUND Lesch-Nyhan disease (LND) is a rare X-linked recessive neurogenetic disorder caused by deficiency of the purine salvage enzyme hypoxanthine phosphoribosyltransferase (HPRT, EC 2.4.2.8) which is responsible for recycling purine bases into purine nucleotides. Affected individuals have hyperuricemia leading to gout and urolithiasis, accompanied by a characteristic severe neurobehavioural phenotype with compulsive self-mutilation, extrapyramidal motor disturbances and cognitive impairment. AIM For its theoretical therapeutic potential to replenish the brain purine nucleotide pool, oral supplementation with S-adenosylmethionine (SAMe) was trialed in 5 Malaysian children with LND, comprising 4 related Malay children from 2 families, including an LND girl, and a Chinese Malaysian boy. RESULTS Dramatic reductions of self-injury and aggressive behaviour, as well as a milder reduction of dystonia, were observed in all 5 patients. Other LND neurological symptoms did not improve during SAMe therapy. DISCUSSION Molecular mechanisms proposed for LND neuropathology include GTP depletion in the brain leading to impaired dopamine synthesis, dysfunction of G-protein-mediated signal transduction, and defective developmental programming of dopamine neurons. The improvement of our LND patients on SAMe, particularly the hallmark self-injurious behaviour, echoed clinical progress reported with another purine nucleotide depletion disorder, Arts Syndrome, but contrasted lack of benefit with the purine disorder adenylosuccinate lyase deficiency. This first report of a trial of SAMe therapy in LND children showed remarkably encouraging results that warrant larger studies.
Journal of Immunology | 2012
Janet M. Murray; Terri L. Messier; Jami Rivers; J. Patrick O’Neill; Vernon E. Walker; Pamela M. Vacek; Barry A. Finette
The generation of TCR proteins is the result of V(D)J recombinase-mediated genomic rearrangements at recombination signal sequences (RSS) in human lymphocytes. V(D)J recombinase can also mediate rearrangements at nonimmune or “cryptic” RSS in normal and leukemic human peripheral T cells. We previously demonstrated age- and gender-specific developmental differences in V(D)J coding joint processing at cryptic RSS within the HPRT locus in peripheral T cells from healthy children (Murray et al. 2006. J. Immunol. 177: 5393–5404). In this study, we investigated developmentally specific V(D)J recombinase TCRβ immune gene rearrangements and coding joint processing at RSS in peripheral T cells in the same pediatric population. This approach provided a unique opportunity to investigate site-specific V(D)J recombinase rearrangements and coding joint processing at immune and nonimmune genes from the same individual T cell population. We determined the genomic sequence of 244 TCRβ coding junctions from 112 (63 male, 49 female) subjects from the late stages of fetal development through 9 y of age. We observed both age- and gender-specific V(D)J recombinase-mediated TCRβ gene usage and coding joint processing at immune RSS. To the best of our knowledge, these data represent the first description of age- and gender-specific developmental differences in TCR gene usage and coding joint processing that could directly influence TCR diversity and immune specificity. It will be important for future studies to ascertain the mechanistic etiology of these developmental and gender differences in TCR diversity and specificity, as well as their importance with respect to the age and gender risks for infectious and autoimmune diseases in humans.
Basic life sciences | 1990
Richard J. Albertini; Janice A. Nicklas; J. Patrick O’Neill
Gene mutations that arise in vivo in humans are now amenable to study. One method involves the direct cloning in vitro of T-lymphocytes that have undergone mutations in vivo of the X-chromosomal gene for hypoxanthineguanine phosphoribosyltransferase (hprt) (Albertini et al., 1982; Morley et al., 1983, O’Neill et al., 1987; O’Neill et al., 1989). This method, called the T-cell cloning assay, permits recovery of the mutant clones for further characterization. Therefore, in addition to quantitating in vivo mutant frequencies, “mutational spectra” can be defined, at least for hprt. This paper summarizes results of recent studies in our laboratory that have characterized in vivo hprt T-cell mutations for normal young adults, normal newborns, and individuals exposed to total body ionizing irradiations delivered by internal gamma emitters.
Vaccine | 2006
Beth D. Kirkpatrick; Robin McKenzie; J. Patrick O’Neill; Catherine J. Larsson; A. Louis Bourgeois; Janet Shimko; Matthew Bentley; Jill Makin; Steve Chatfield; Zoë Hindle; Christine Fidler; Brad E. Robinson; Cassandra Ventrone; Nivedita Bansal; Colleen M. Carpenter; Deborah Kutzko; Sandra Hamlet; Casey LaPointe; David N. Taylor
Molecular Genetics and Metabolism | 2005
Laura De Gregorio; H.A. Jinnah; James C. Harris; William L. Nyhan; David J. Schretlen; Lucy Trombley; J. Patrick O’Neill
Mutation Research | 2001
Richard F. Branda; J. Patrick O’Neill; Elice M. Brooks; Lucy Trombley; Janice A. Nicklas